Folgen
Shuhei Amakawa
Shuhei Amakawa
Bestätigte E-Mail-Adresse bei hiroshima-u.ac.jp
Titel
Zitiert von
Zitiert von
Jahr
An 80-Gb/s 300-GHz-band single-chip CMOS transceiver
S Lee, S Hara, T Yoshida, S Amakawa, R Dong, A Kasamatsu, J Sato, ...
IEEE Journal of Solid-State Circuits 54 (12), 3577-3588, 2019
2392019
Single-parameter nonadiabatic quantized charge pumping
B Kaestner, V Kashcheyevs, S Amakawa, MD Blumenthal, L Li, T Janssen, ...
Physical Review B 77 (15), 153301, 2008
2322008
17.9 A 105Gb/s 300GHz CMOS transmitter
K Takano, S Amakawa, K Katayama, S Hara, R Dong, A Kasamatsu, ...
2017 IEEE International Solid-State Circuits Conference (ISSCC), 308-309, 2017
1532017
A 300 GHz CMOS transmitter with 32-QAM 17.5 Gb/s/ch capability over six channels
K Katayama, K Takano, S Amakawa, S Hara, A Kasamatsu, K Mizuno, ...
IEEE Journal of Solid-State Circuits 51 (12), 3037-3048, 2016
1342016
White paper on RF enabling 6G–opportunities and challenges from technology to spectrum
S Amakawa, Z Aslam, J Buckwater, S Caputo, A Chaoub, Y Chen, Y Corre, ...
University of Oulu, 2021
862021
20.1 A 300GHz 40nm CMOS transmitter with 32-QAM 17.5 Gb/s/ch capability over 6 channels
K Katayama, K Takano, S Amakawa, S Hara, A Kasamatsu, K Mizuno, ...
2016 IEEE International Solid-State Circuits Conference (ISSCC), 342-343, 2016
772016
A 32Gbit/s 16QAM CMOS receiver in 300GHz band
S Hara, K Katayama, K Takano, R Dong, I Watanabe, N Sekine, ...
2017 IEEE MTT-S International Microwave Symposium (IMS), 1703-1706, 2017
762017
Tehrahertz CMOS design for low-power and high-speed wireless communication
M Fujishima, S Amakawa, K Takano, K Katayama, T Yoshida
IEICE Transactions on Electronics 98 (12), 1091-1104, 2015
472015
A 50-GS/s 5-b ADC in 0.18-µm SiGe BiCMOS
J Lee, YK Chen
Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International, 900-903, 2010
44*2010
Single-electron circuit simulation
S Amakawa, H Majima, H Fukui, M Fujishima, K Hoh
IEICE transactions on electronics 81 (1), 21-29, 1998
421998
2.4–10 GHz low-noise injection-locked ring voltage controlled oscillator in 90 nm complementary metal oxide semiconductor
S Lee, S Amakawa, N Ishihara, K Masu
Japanese Journal of Applied Physics 50 (4S), 04DE03, 2011
332011
Nanoscale Coulomb blockade memory and logic devices
H Mizuta, HO Müller, K Tsukagoshi, D Williams, Z Durrani, A Irvine, ...
Nanotechnology 12 (2), 155, 2001
322001
300-GHz CMOS transmitter module with built-in waveguide transition on a multilayered glass epoxy PCB
K Takano, K Katayama, S Hara, R Dong, K Mizuno, K Takahashi, ...
2018 IEEE Radio and Wireless Symposium (RWS), 154-156, 2018
292018
Low-phase-noise wide-frequency-range ring-VCO-based scalable PLL with subharmonic injection locking in 0.18 µm CMOS
S Lee, S Amakawa, N Ishihara, K Masu
2010 IEEE MTT-S International Microwave Symposium, 1-1, 2010
292010
300-GHz CMOS transceiver for terahertz wireless communication
S Hara, K Takano, K Katayama, R Dong, S Lee, I Watanabe, N Sekine, ...
2018 Asia-Pacific Microwave Conference (APMC), 429-431, 2018
282018
56-Gbit/s 16-QAM wireless link with 300-GHz-band CMOS transmitter
K Takano, K Katayama, S Amakawa, T Yoshida, M Fujishima
2017 IEEE MTT-S International Microwave Symposium (IMS), 793-796, 2017
282017
Integrated-circuit approaches to THz communications: Challenges, advances, and future prospects
M Fujishima, S Amakawa
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and …, 2017
282017
Wireless digital data transmission from a 300 GHz CMOS transmitter
K Takano, K Katayama, S Amakawa, T Yoshida, M Fujishima
Electronics Letters 52 (15), 1353-1355, 2016
282016
A low-phase-noise injection-locked differential ring-VCO with half-integral subharmonic locking in 0.18 µm CMOS
Y Kobayashi, S Amakawa, N Ishihara, K Masu
2009 Proceedings of ESSCIRC, 440-443, 2009
282009
Design of CMOS inverter-based output buffers adapting the Cherry-Hooper broadbanding technique
T Maekawa, S Amakawa, N Ishihara, K Masu
2009 European Conference on Circuit Theory and Design, 511-514, 2009
272009
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20