Quantitative benchmark computations of two‐dimensional bubble dynamics SR Hysing, S Turek, D Kuzmin, N Parolini, E Burman, S Ganesan, ... International Journal for Numerical Methods in Fluids 60 (11), 1259-1288, 2009 | 530 | 2009 |

On spurious velocities in incompressible flow problems with interfaces S Ganesan, G Matthies, L Tobiska Computer Methods in Applied Mechanics and Engineering 196 (7), 1193-1202, 2007 | 128 | 2007 |

A coupled arbitrary Lagrangian–Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants S Ganesan, L Tobiska Journal of Computational Physics 228 (8), 2859-2873, 2009 | 85 | 2009 |

Local projection stabilization of equal order interpolation applied to the Stokes problem S Ganesan, G Matthies, L Tobiska Mathematics of Computation 77 (264), 2039-2060, 2008 | 84 | 2008 |

An accurate finite element scheme with moving meshes for computing 3D‐axisymmetric interface flows S Ganesan, L Tobiska International journal for numerical methods in fluids 57 (2), 119-138, 2008 | 79 | 2008 |

Arbitrary Lagrangian–Eulerian finite-element method for computation of two-phase flows with soluble surfactants S Ganesan, L Tobiska Journal of Computational Physics 231 (9), 3685-3702, 2012 | 74 | 2012 |

ParMooN—A modernized program package based on mapped finite elements U Wilbrandt, C Bartsch, N Ahmed, N Alia, F Anker, L Blank, A Caiazzo, ... Computers & Mathematics with Applications 74 (1), 74-88, 2017 | 57 | 2017 |

Stabilization by local projection for convection–diffusion and incompressible flow problems S Ganesan, L Tobiska Journal of Scientific Computing 43 (3), 326-342, 2010 | 57 | 2010 |

On the dynamic contact angle in simulation of impinging droplets with sharp interface methods S Ganesan Microfluidics and nanofluidics 14 (3), 615-625, 2013 | 44 | 2013 |

Modelling and simulation of moving contact line problems with wetting effects S Ganesan, L Tobiska Computing and visualization in science 12 (7), 329-336, 2009 | 44 | 2009 |

Finite element methods on moving meshes for free surface and interface flows S Ganesan docupoint-Verl. Otto-von-Guericke University, 2006 | 37 | 2006 |

An operator-splitting Galerkin/SUPG finite element method for population balance equations: stability and convergence S Ganesan ESAIM: Mathematical Modelling and Numerical Analysis 46 (6), 1447-1465, 2012 | 36 | 2012 |

An object oriented parallel finite element scheme for computations of PDEs: Design and implementation S Ganesan, V John, G Matthies, R Meesala, A Shamim, U Wilbrandt 2016 IEEE 23rd International Conference on High Performance Computing …, 2016 | 35 | 2016 |

An operator-splitting finite element method for the efficient parallel solution of multidimensional population balance systems S Ganesan, L Tobiska Chemical Engineering Science 69 (1), 59-68, 2012 | 31 | 2012 |

Oscillations of soap bubbles U Kornek, F Müller, K Harth, A Hahn, S Ganesan, L Tobiska, R Stannarius New Journal of Physics 12 (7), 073031, 2010 | 29 | 2010 |

A three-field local projection stabilized formulation for computations of Oldroyd-B viscoelastic fluid flows J Venkatesan, S Ganesan Journal of Non-Newtonian Fluid Mechanics 247, 90-106, 2017 | 26 | 2017 |

Finite elements: Theory and algorithms S Ganesan, L Tobiska Cambridge University Press, 2017 | 23 | 2017 |

Pressure separation––a technique for improving the velocity error in finite element discretisations of the Navier–Stokes equations S Ganesan, V John Applied mathematics and computation 165 (2), 275-290, 2005 | 23 | 2005 |

Galerkin finite element method for cancer invasion mathematical model S Ganesan, S Lingeshwaran Computers & Mathematics with Applications 73 (12), 2603-2617, 2017 | 22 | 2017 |

A biophysical model of tumor invasion S Ganesan, S Lingeshwaran Communications in Nonlinear Science and Numerical Simulation 46, 135-152, 2017 | 21 | 2017 |