Follow
Syama Sundar Rangapuram
Syama Sundar Rangapuram
Amazon
Verified email at amazon.de
Title
Cited by
Cited by
Year
Deep state space models for time series forecasting
SS Rangapuram, MW Seeger, J Gasthaus, L Stella, Y Wang, ...
Advances in neural information processing systems 31, 2018
3962018
The total variation on hypergraphs-learning on hypergraphs revisited
M Hein, S Setzer, L Jost, SS Rangapuram
Advances in Neural Information Processing Systems 26, 2013
1232013
GluonTS: Probabilistic and Neural Time Series Modeling in Python.
A Alexandrov, K Benidis, M Bohlke-Schneider, V Flunkert, J Gasthaus, ...
J. Mach. Learn. Res. 21 (116), 1-6, 2020
1052020
Constrained 1-spectral clustering
SS Rangapuram, M Hein
Artificial Intelligence and Statistics, 1143-1151, 2012
1052012
Probabilistic forecasting with spline quantile function RNNs
J Gasthaus, K Benidis, Y Wang, SS Rangapuram, D Salinas, V Flunkert, ...
The 22nd international conference on artificial intelligence and statistics …, 2019
1022019
Neural forecasting: Introduction and literature overview
K Benidis, SS Rangapuram, V Flunkert, B Wang, D Maddix, C Turkmen, ...
arXiv preprint arXiv:2004.10240, 2020
972020
Towards realistic team formation in social networks based on densest subgraphs
SS Rangapuram, T Bühler, M Hein
Proceedings of the 22nd international conference on World Wide Web, 1077-1088, 2013
972013
Elastic machine learning algorithms in amazon sagemaker
E Liberty, Z Karnin, B Xiang, L Rouesnel, B Coskun, R Nallapati, ...
Proceedings of the 2020 ACM SIGMOD International Conference on Management of …, 2020
732020
Gluonts: Probabilistic time series models in python
A Alexandrov, K Benidis, M Bohlke-Schneider, V Flunkert, J Gasthaus, ...
arXiv preprint arXiv:1906.05264, 2019
682019
Normalizing kalman filters for multivariate time series analysis
E de Bézenac, SS Rangapuram, K Benidis, M Bohlke-Schneider, R Kurle, ...
Advances in Neural Information Processing Systems 33, 2995-3007, 2020
412020
End-to-end learning of coherent probabilistic forecasts for hierarchical time series
SS Rangapuram, LD Werner, K Benidis, P Mercado, J Gasthaus, ...
International Conference on Machine Learning, 8832-8843, 2021
232021
Deep rao-blackwellised particle filters for time series forecasting
R Kurle, SS Rangapuram, E de Bézenac, S Günnemann, J Gasthaus
Advances in Neural Information Processing Systems 33, 15371-15382, 2020
232020
Constrained fractional set programs and their application in local clustering and community detection
T Bühler, SS Rangapuram, S Setzer, M Hein
International Conference on Machine Learning, 624-632, 2013
222013
Tight continuous relaxation of the balanced k-cut problem
SS Rangapuram, PK Mudrakarta, M Hein
Advances in Neural Information Processing Systems 27, 2014
192014
Approximate bayesian inference in linear state space models for intermittent demand forecasting at scale
M Seeger, S Rangapuram, Y Wang, D Salinas, J Gasthaus, ...
arXiv preprint arXiv:1709.07638, 2017
182017
Deep Learning for Forecasting: Current Trends and Challenges.
T Januschowski, J Gasthaus, Y Wang, SS Rangapuram, L Callot
Foresight: The International Journal of Applied Forecasting, 2018
152018
Methods for sparse and low-rank recovery under simplex constraints
P Li, SS Rangapuram, M Slawski
arXiv preprint arXiv:1605.00507, 2016
122016
GluonTS: Probabilistic Time Series Modeling in Python
A Alexandrov, K Benidis, M Bohlke-Schneider, V Flunkert, J Gasthaus, ...
arXiv preprint arXiv:1906.05264, 2019
112019
Neural Flows: Efficient Alternative to Neural ODEs
M Biloš, J Sommer, SS Rangapuram, T Januschowski, S Günnemann
Advances in Neural Information Processing Systems 34, 21325-21337, 2021
72021
Artificial intelligence system combining state space models and neural networks for time series forecasting
S Rangapuram, JA Gasthaus, T Januschowski, M Seeger, L Stella
US Patent 11,281,969, 2022
62022
The system can't perform the operation now. Try again later.
Articles 1–20