Florian Becker
Florian Becker
Sony Europe B.V.
Bestätigte E-Mail-Adresse bei sony.com
Titel
Zitiert von
Zitiert von
Jahr
Convex multi-class image labeling by simplex-constrained total variation
J Lellmann, J Kappes, J Yuan, F Becker, C Schnörr
International conference on scale space and variational methods in computer …, 2009
1662009
Median and related local filters for tensor-valued images
M Welk, J Weickert, F Becker, C Schnörr, C Feddern, B Burgeth
Signal Processing 87 (2), 291-308, 2007
802007
Convex optimization for multi-class image labeling with a novel family of total variation based regularizers
J Lellmann, F Becker, C Schnörr
2009 IEEE 12th International Conference on Computer Vision, 646-653, 2009
602009
A class of quasi-variational inequalities for adaptive image denoising and decomposition
F Lenzen, F Becker, J Lellmann, S Petra, C Schnörr
Computational Optimization and Applications 54 (2), 371-398, 2013
412013
Denoising strategies for time-of-flight data
F Lenzen, KI Kim, H Schäfer, R Nair, S Meister, F Becker, CS Garbe, ...
Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications, 25-45, 2013
312013
Variational Adaptive Correlation Method for Flow Estimation
F Becker, B Wieneke, S Petra, A Schröder, C Schnörr
Transactions on Image Processing 21 (6), 3053-3065, 2012
252012
Optical Flow.
F Becker, S Petra, C Schnörr
Handbook of Mathematical Methods in Imaging 2, 1945-2004, 2015
242015
Adaptive second-order total variation: An approach aware of slope discontinuities
F Lenzen, F Becker, J Lellmann
International Conference on Scale Space and Variational Methods in Computer …, 2013
232013
Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences
F Becker, F Lenzen, JH Kappes, C Schnörr
International Journal of Computer Vision 105 (3), 269-297, 2013
202013
Variational recursive joint estimation of dense scene structure and camera motion from monocular high speed traffic sequences
F Becker, F Lenzen, JH Kappes, C Schnörr
Computer Vision (ICCV), 2011 IEEE International Conference on, 1692-1699, 2011
202011
Matrix-valued filters as convex programs
M Welk, F Becker, C Schnörr, J Weickert
International Conference on Scale-Space Theories in Computer Vision, 204-216, 2005
152005
A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry
F Becker, B Wieneke, J Yuan, C Schnörr
Pattern Recognition - 30th DAGM Symposium, volume 5096 of LNCS, 335-344, 2008
132008
Second Order Minimum Energy Filtering on with Nonlinear Measurement Equations
J Berger, A Neufeld, F Becker, F Lenzen, C Schnörr
International Conference on Scale Space and Variational Methods in Computer …, 2015
122015
Solving quasi-variational inequalities for image restoration with adaptive constraint sets
F Lenzen, J Lellmann, F Becker, C Schnorr
SIAM Journal on Imaging Sciences 7 (4), 2139-2174, 2014
122014
B-SMART: Bregman-based first-order algorithms for non-negative compressed sensing problems
S Petra, C Schnörr, F Becker, F Lenzen
International Conference on Scale Space and Variational Methods in Computer …, 2013
102013
Variational image denoising with adaptive constraint sets
F Lenzen, F Becker, J Lellmann, S Petra, C Schnörr
International Conference on Scale Space and Variational Methods in Computer …, 2011
92011
A study of non-smooth convex flow decomposition
J Yuan, C Schnörr, G Steidl, F Becker
International Workshop on Variational, Geometric, and Level Set Methods in …, 2005
92005
Estimating vehicle ego-motion and piecewise planar scene structure from optical flow in a continuous framework
A Neufeld, J Berger, F Becker, F Lenzen, C Schnörr
German Conference on Pattern Recognition, 41-52, 2015
62015
Matrix-valued filters as convex programs
F Becker
Diploma thesis, CVGPR group, University of Mannheim, 2004
62004
Motion-based material characterization in sensor-based sorting
G Maier, F Pfaff, F Becker, C Pieper, R Gruna, B Noack, H Kruggel-Emden, ...
tm-Technisches Messen 85 (3), 202-210, 2018
52018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20