Follow
Loucas Pillaud-Vivien
Loucas Pillaud-Vivien
Ecole Polytechnique de Lausanne, EPFL
Verified email at epfl.ch - Homepage
Title
Cited by
Cited by
Year
Statistical optimality of stochastic gradient descent on hard learning problems through multiple passes
L Pillaud-Vivien, A Rudi, F Bach
Advances in Neural Information Processing Systems 31, 2018
702018
Implicit bias of sgd for diagonal linear networks: a provable benefit of stochasticity
S Pesme, L Pillaud-Vivien, N Flammarion
Advances in Neural Information Processing Systems 34, 29218-29230, 2021
302021
Exponential convergence of testing error for stochastic gradient methods
L Pillaud-Vivien, A Rudi, F Bach
Conference On Learning Theory, 250-296, 2018
242018
Last iterate convergence of SGD for Least-Squares in the Interpolation regime.
AV Varre, L Pillaud-Vivien, N Flammarion
Advances in Neural Information Processing Systems 34, 21581-21591, 2021
152021
Statistical estimation of the poincaré constant and application to sampling multimodal distributions
L Pillaud-Vivien, F Bach, T Lelièvre, A Rudi, G Stoltz
International Conference on Artificial Intelligence and Statistics, 2753-2763, 2020
102020
Central Limit Theorem for stationary Fleming--Viot particle systems in finite spaces
T Lelievre, L Pillaud-Vivien, J Reygner
ALEA, Lat. Am. J. Probab. Math. Stat. 15, 1163–1182, 2018
102018
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
E Boursier, L Pillaud-Vivien, N Flammarion
arXiv preprint arXiv:2206.00939, 2022
52022
Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning
V Cabannes, L Pillaud-Vivien, F Bach, A Rudi
Advances in Neural Information Processing Systems 34, 2021
52021
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
LP Vivien, J Reygner, N Flammarion
Conference on Learning Theory, 2127-2159, 2022
42022
SGD with large step sizes learns sparse features
M Andriushchenko, A Varre, L Pillaud-Vivien, N Flammarion
arXiv preprint arXiv:2210.05337, 2022
22022
Learning with reproducing kernel Hilbert spaces: stochastic gradient descent and laplacian estimation
L Pillaud-Vivien
Université Paris sciences et lettres, 2020
12020
La Résilience à Paris: états des lieux et préconisations multi-bénéfices pour l’espace public
A Hatchuel, A Labourdette, F Leduc, L Pillaud-Vivien, M Renaudin
Mairie de Paris, 2017
2017
The system can't perform the operation now. Try again later.
Articles 1–12