Folgen
Milad Nasr
Milad Nasr
Google DeepMind
Bestätigte E-Mail-Adresse bei srxzr.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Comprehensive Privacy Analysis of Deep Learning: Stand-alone and Federated Learning under Passive and Active White-box Inference Attacks
M Nasr, R Shokri, A Houmansadr
2019 IEEE Symposium on Security and Privacy, 2019
1586*2019
Machine Learning with Membership Privacy using Adversarial Regularization
M Nasr, R Shokri, A Houmansadr
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications …, 2018
4502018
Membership inference attacks from first principles
N Carlini, S Chien, M Nasr, S Song, A Terzis, F Tramer
2022 IEEE Symposium on Security and Privacy (SP), 1897-1914, 2022
3722022
Universal and transferable adversarial attacks on aligned language models
A Zou, Z Wang, N Carlini, M Nasr, JZ Kolter, M Fredrikson
arXiv preprint arXiv:2307.15043, 2023
3122023
Extracting training data from diffusion models
N Carlini, J Hayes, M Nasr, M Jagielski, V Sehwag, F Tramer, B Balle, ...
32nd USENIX Security Symposium (USENIX Security 23), 5253-5270, 2023
2772023
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
M Nasr, S Song, A Thakurta, N Papernot, N Carlini
2021 IEEE Symposium on Security and Privacy, 2021
1752021
DeepCorr: Strong Flow Correlation Attacks on Tor Using Deep Learning
M Nasr, A Bahramali, A Houmansadr
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications …, 2018
1722018
Defeating {DNN-Based} Traffic Analysis Systems in {Real-Time} With Blind Adversarial Perturbations
M Nasr, A Bahramali, A Houmansadr
30th USENIX Security Symposium (USENIX Security 21), 2705-2722, 2021
94*2021
Are aligned neural networks adversarially aligned?
N Carlini, M Nasr, CA Choquette-Choo, M Jagielski, I Gao, PWW Koh, ...
Advances in Neural Information Processing Systems 36, 2024
932024
Compressive Traffic Analysis: A New Paradigm for Scalable Traffic Analysis
M Nasr, A Houmansadr, A Mazumdar
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications …, 2017
772017
Daemo: A Self-Governed Crowdsourcing Marketplace
SN Gaikwad, D Morina, R Nistala, M Agarwal, A Cossette, R Bhanu, ...
Adjunct Proceedings of the 28th Annual ACM Symposium on User Interface …, 2015
632015
Scalable Extraction of Training Data from (Production) Language Models
M Nasr, N Carlini, J Hayase, M Jagielski, AF Cooper, D Ippolito, ...
arXiv preprint arXiv:2311.17035, 2023
612023
Mitigating Membership Inference Attacks by {Self-Distillation} Through a Novel Ensemble Architecture
X Tang, S Mahloujifar, L Song, V Shejwalkar, M Nasr, A Houmansadr, ...
31st USENIX Security Symposium (USENIX Security 22), 1433-1450, 2022
582022
The Waterfall of Liberty: Decoy Routing Circumvention that Resists Routing Attacks
M Nasr, H Zolfaghari, A Houmansadr
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications …, 2017
492017
Preventing Verbatim Memorization in Language Models Gives a False Sense of Privacy
D Ippolito, F Tramèr, M Nasr, C Zhang, M Jagielski, K Lee, ...
arXiv preprint arXiv:2210.17546, 2022
482022
Robust adversarial attacks against DNN-based wireless communication systems
A Bahramali, M Nasr, A Houmansadr, D Goeckel, D Towsley
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications …, 2021
412021
Improving Deep Learning with Differential Privacy using Gradient Encoding and Denoising
M Nasr, R Shokri
TPDP 2020, 2020
412020
Bidding Strategies with Gender Nondiscrimination: Constraints for Online Ad Auctions
M Nasr, M Tschantz
ACM Conference on Fairness, Accountability, and Transparency (ACM FAT*), 2020
372020
A dynamic bayesian security game framework for strategic defense mechanism design
S Farhang, MH Manshaei, M Nasr, Q Zhu
International Conference on Decision and Game Theory for Security, 319-328, 2014
372014
Tight auditing of differentially private machine learning
M Nasr, J Hayes, T Steinke, B Balle, F Tramèr, M Jagielski, N Carlini, ...
32nd USENIX Security Symposium (USENIX Security 23), 1631-1648, 2023
302023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20