Dianbo Liu
Dianbo Liu
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Patients with Cancer Appear More Vulnerable to SARS-COV-2: A Multicenter Study during the COVID-19 Outbreak
M Dai, D Liu, M Liu, F Zhou, G Li, Z Chen, Z Zhang, H You, M Wu, ...
Cancer discovery, 2020
Expanded encyclopaedias of DNA elements in the human and mouse genomes
JE Moore, MJ Purcaro, HE Pratt, CB Epstein, N Shoresh, J Adrian, T Kawli, ...
Nature 583 (7818), 699-710, 2020
Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records
L Huang, AL Shea, H Qian, A Masurkar, H Deng, D Liu
Journal of biomedical informatics 99, 103291, 2019
The role of absolute humidity on transmission rates of the COVID-19 outbreak
W Luo, MS Majumder, D Liu, C Poirier, KD Mandl, M Lipsitch, ...
MedRxiv, 2020.02. 12.20022467, 2020
LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
L Huang, Y Yin, Z Fu, S Zhang, H Deng, D Liu
Plos one 15 (4), e0230706, 2020
The role of environmental factors on transmission rates of the COVID-19 outbreak: an initial assessment in two spatial scales
C Poirier, W Luo, MS Majumder, D Liu, KD Mandl, TA Mooring, ...
Scientific reports 10 (1), 17002, 2020
A machine learning methodology for real-time forecasting of the 2019-2020 COVID-19 outbreak using Internet searches, news alerts, and estimates from mechanistic models
D Liu, L Clemente, C Poirier, X Ding, M Chinazzi, JT Davis, A Vespignani, ...
arXiv preprint arXiv:2004.04019, 2020
Perspectives on ENCODE
MP Snyder, TR Gingeras, JE Moore, Z Weng, MB Gerstein, B Ren, ...
Nature 583 (7818), 693-698, 2020
Two-stage federated phenotyping and patient representation learning
D Liu, D Dligach, T Miller
Proceedings of the 18th BioNLP Workshop, 2019
Systems and methods for crowdsourcing, analyzing, and/or matching personal data
Z Zhang, M Kellis, D Liu, A Kim, L Huang, S Nuckchady
US Patent 11,593,512, 2023
FADL: Federated-Autonomous Deep Learning for Distributed Electronic Health Record
D Liu, T Miller, R Sayeed, K Mandl
NIPS Machine Learning for Health (ML4H) Workshop, 2018
High-throughput 5′ UTR engineering for enhanced protein production in non-viral gene therapies
J Cao, EM Novoa, Z Zhang, WCW Chen, D Liu, GCG Choi, ASL Wong, ...
Nature communications 12 (1), 4138, 2021
Flow: A dataset and benchmark for floating waste detection in inland waters
Y Cheng, J Zhu, M Jiang, J Fu, C Pang, P Wang, K Sankaran, O Onabola, ...
Proceedings of the IEEE/CVF international conference on computer vision …, 2021
DeepFaceLIFT: interpretable personalized models for automatic estimation of self-reported pain
D Liu, F Peng, A Shea, R Picard
Journal of Machine Learning Research 66, 1-16, 2017
Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
D Liu, L Clemente, C Poirier, X Ding, M Chinazzi, J Davis, A Vespignani, ...
Journal of medical Internet research 22 (8), e20285, 2020
Discrete-valued neural communication
D Liu, AM Lamb, K Kawaguchi, AG ALIAS PARTH GOYAL, C Sun, ...
Advances in Neural Information Processing Systems 34, 2109-2121, 2021
Maintenance of distinct melanocyte populations in the interfollicular epidermis
JD Glover, S Knolle, KL Wells, D Liu, IJ Jackson, RL Mort, DJ Headon
Pigment Cell & Melanoma Research 28 (4), 476-480, 2015
Federated pretraining and fine tuning of bert using clinical notes from multiple silos
D Liu, T Miller
arXiv preprint arXiv:2002.08562, 2020
Machine learning methods for automatic pain assessment using facial expression information: Protocol for a systematic review and meta-analysis
D Liu, D Cheng, TT Houle, L Chen, W Zhang, H Deng
Medicine 97 (49), e13421, 2018
FeARH: Federated machine learning with anonymous random hybridization on electronic medical records
J Cui, H Zhu, H Deng, Z Chen, D Liu
Journal of Biomedical Informatics 117, 103735, 2021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20