Noah Y. Siegel
Noah Y. Siegel
Verified email at - Homepage
Cited by
Cited by
Keep doing what worked: Behavioral modelling priors for offline reinforcement learning
NY Siegel, JT Springenberg, F Berkenkamp, A Abdolmaleki, M Neunert, ...
arXiv preprint arXiv:2002.08396, 2020
Figureseer: Parsing result-figures in research papers
N Siegel, Z Horvitz, R Levin, S Divvala, A Farhadi
European Conference on Computer Vision, 664-680, 2016
Critic regularized regression
Z Wang, A Novikov, K Zolna, JS Merel, JT Springenberg, SE Reed, ...
Advances in Neural Information Processing Systems 33, 7768-7778, 2020
Extracting scientific figures with distantly supervised neural networks
N Siegel, N Lourie, R Power, W Ammar
Proceedings of the 18th ACM/IEEE on joint conference on digital libraries†…, 2018
Imagined value gradients: Model-based policy optimization with tranferable latent dynamics models
A Byravan, JT Springenberg, A Abdolmaleki, R Hafner, M Neunert, ...
Conference on Robot Learning, 566-589, 2020
Regularized hierarchical policies for compositional transfer in robotics
M Wulfmeier, A Abdolmaleki, R Hafner, JT Springenberg, M Neunert, ...
Compositional transfer in hierarchical reinforcement learning
M Wulfmeier, A Abdolmaleki, R Hafner, JT Springenberg, M Neunert, ...
arXiv preprint arXiv:1906.11228, 2019
From motor control to team play in simulated humanoid football
S Liu, G Lever, Z Wang, J Merel, SM Eslami, D Hennes, WM Czarnecki, ...
arXiv preprint arXiv:2105.12196, 2021
Data-efficient hindsight off-policy option learning
M Wulfmeier, D Rao, R Hafner, T Lampe, A Abdolmaleki, T Hertweck, ...
International Conference on Machine Learning, 11340-11350, 2021
Towards real robot learning in the wild: A case study in bipedal locomotion
M Bloesch, J Humplik, V Patraucean, R Hafner, T Haarnoja, A Byravan, ...
Conference on Robot Learning, 1502-1511, 2022
Simple sensor intentions for exploration
T Hertweck, M Riedmiller, M Bloesch, JT Springenberg, N Siegel, ...
arXiv preprint arXiv:2005.07541, 2020
Understanding charts in research papers: A learning approach
N Siegel
Technical report, 2015
Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors
S Bohez, S Tunyasuvunakool, P Brakel, F Sadeghi, L Hasenclever, ...
arXiv preprint arXiv:2203.17138, 2022
" What, not how": Solving an under-actuated insertion task from scratch
G Vezzani, M Neunert, M Wulfmeier, R Jeong, T Lampe, N Siegel, ...
arXiv preprint arXiv:2010.15492, 2020
The system can't perform the operation now. Try again later.
Articles 1–14