Conservation properties of a time FE method. Part IV: Higher order energy and momentum conserving schemes M Groß, P Betsch, P Steinmann International Journal for Numerical Methods in Engineering 63 (13), 1849-1897, 2005 | 83 | 2005 |
Energy–momentum consistent finite element discretization of dynamic finite viscoelasticity M Groß, P Betsch International journal for numerical methods in engineering 81 (11), 1341-1386, 2010 | 38 | 2010 |
An energy‐entropy‐consistent time stepping scheme for nonlinear thermo‐viscoelastic continua M Krüger, M Groß, P Betsch ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2016 | 34 | 2016 |
Galerkin-based energy–momentum consistent time-stepping algorithms for classical nonlinear thermo-elastodynamics M Groß, P Betsch Mathematics and Computers in Simulation 82 (4), 718-770, 2011 | 34 | 2011 |
A comparison of structure-preserving integrators for discrete thermoelastic systems M Krüger, M Groß, P Betsch Computational Mechanics 47, 701-722, 2011 | 32 | 2011 |
Conserving time integrators for nonlinear elastodynamics M Groß Technische Universität Kaiserslautern, 2004 | 27 | 2004 |
Higher-order accurate and energy-momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity M Groß | 26 | 2009 |
Non-isothermal energy–momentum time integrations with drilling degrees of freedom of composites with viscoelastic fiber bundles and curvature–twist stiffness M Groß, J Dietzsch, C Röbiger Computer Methods in Applied Mechanics and Engineering 365, 112973, 2020 | 18 | 2020 |
Variational-based higher-order accurate energy–momentum schemes for thermo-viscoelastic fiber-reinforced continua M Groß, J Dietzsch, M Bartelt Computer Methods in Applied Mechanics and Engineering 336, 353-418, 2018 | 16 | 2018 |
Variational-based energy–momentum schemes of higher-order for elastic fiber-reinforced continua M Groß, J Dietzsch Computer Methods in Applied Mechanics and Engineering 320, 509-542, 2017 | 16 | 2017 |
Structure-preserving time integration of non-isothermal finite viscoelastic continua related to variational formulations of continuum dynamics M Groß, M Bartelt, P Betsch Computational Mechanics 62, 123-150, 2018 | 11 | 2018 |
Variational-based locking-free energy–momentum schemes of higher-order for thermo-viscoelastic fiber-reinforced continua M Groß, J Dietzsch Computer Methods in Applied Mechanics and Engineering 343, 631-671, 2019 | 10 | 2019 |
On deriving higher-order and energy-momentum-consistent time-stepping-schemes for thermo-viscoelastodynamics from a new hybrid space-time Galerkin method M Gross, P Betsch Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, 2007 | 10 | 2007 |
Energy-momentum conserving higher-order time integration of nonlinear dynamics of finite elastic fiber-reinforced continua N Erler, M Groß Computational Mechanics 55, 921-942, 2015 | 9 | 2015 |
Variational integrators for thermomechanical coupled dynamic systems with heat conduction D Kern, S Bär, M Groß PAMM 14 (1), 47-48, 2014 | 9 | 2014 |
An energy consistent hybrid space‐time Galerkin method for nonlinear thermomechanical problems M Groß, P Betsch PAMM: Proceedings in Applied Mathematics and Mechanics 6 (1), 443-444, 2006 | 9 | 2006 |
An energy consistent hybrid space-time finite element method for nonlinear thermo-viscoelastodynamics M Groß, P Betsch Computational Methods for Coupled Problems in Science and Engineering II …, 2007 | 8 | 2007 |
A mixed B-bar formulation derived by a principle of virtual power for energy–momentum time integrations of fiber-reinforced continua M Groß, J Dietzsch, C Röbiger Computer Methods in Applied Mechanics and Engineering 350, 595-640, 2019 | 7 | 2019 |
Efficient implementation of energy conservation for higher order finite elements with variational integrators M Bartelt, J Dietzsch, M Groß Mathematics and Computers in Simulation 150, 83-121, 2018 | 5 | 2018 |
A new mixed finite element formulation for reorientation in liquid crystalline elastomers M Groß, J Dietzsch, F Concas European Journal of Mechanics-A/Solids 97, 104828, 2023 | 4 | 2023 |