Lucas Kook
Lucas Kook
Assistant Professor of Statistics, Vienna University of Economics and Business
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Copper-induced cell death and the protective role of glutathione: the implication of impaired protein folding rather than oxidative stress
CM Saporito-Magriñá, RN Musacco-Sebio, G Andrieux, L Kook, ...
Metallomics 10 (12), 1743-1754, 2018
Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
K Fröhlich, E Brombacher, M Fahrner, D Vogele, L Kook, N Pinter, ...
Nature communications 13 (1), 2622, 2022
Deep and interpretable regression models for ordinal outcomes
L Kook, L Herzog, T Hothorn, O Dürr, B Sick
Pattern Recognition 122, 108263, 2022
Pitfalls and potentials in simulation studies: Questionable research practices in comparative simulation studies allow for spurious claims of superiority of any method
S Pawel, L Kook, K Reeve
Biometrical Journal 66 (1), 2200091, 2024
Infection of HeLa cells with Chlamydia trachomatis inhibits protein synthesis and causes multiple changes to host cell pathways
M Ohmer, T Tzivelekidis, N Niedenführ, L Volceanov‐Hahn, S Barth, ...
Cellular Microbiology 21 (4), e12993, 2019
Deepregression: a flexible neural network framework for semi-structured deep distributional regression
D Rügamer, C Kolb, C Fritz, F Pfisterer, P Kopper, B Bischl, R Shen, ...
Journal of Statistical Software 105 (2), 1-31, 2023
A systematic evaluation of semispecific peptide search parameter enables identification of previously undescribed N-terminal peptides and conserved proteolytic processing in …
M Fahrner, L Kook, K Fröhlich, ML Biniossek, O Schilling
Proteomes 9 (2), 26, 2021
Distributional anchor regression
L Kook, B Sick, P Bühlmann
Statistics and Computing 32 (3), 39, 2022
Deep interpretable ensembles
L Kook, A Götschi, PFM Baumann, T Hothorn, B Sick
arXiv preprint arXiv:2205.12729, 2022
Distributional regression modeling via generalized additive models for location, scale, and shape: An overview through a data set from learning analytics
F Marmolejo‐Ramos, M Tejo, M Brabec, J Kuzilek, S Joksimovic, ...
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13 (1 …, 2023
Proteomic distinction of renal oncocytomas and chromophobe renal cell carcinomas
V Drendel, B Heckelmann, C Schell, L Kook, ML Biniossek, M Werner, ...
Clinical Proteomics 15, 1-15, 2018
Deep learning versus neurologists: functional outcome prediction in LVO stroke patients undergoing mechanical thrombectomy
L Herzog, L Kook, J Hamann, C Globas, MR Heldner, D Seiffge, ...
Stroke 54 (7), 1761-1769, 2023
Distribution-free location-scale regression
S Siegfried, L Kook, T Hothorn
The American Statistician 77 (4), 345-356, 2023
Regularized transformation models: the tramnet package
L Kook, T Hothorn
R Journal 13 (1), 581, 2021
Estimating conditional distributions with neural networks using R package deeptrafo
L Kook, PFM Baumann, O Dürr, B Sick, D Rügamer
Journal of Statistical Software, 2024
tramvs: Optimal subset selection for transformation models
L Kook, 2022
Safety and effectiveness of IV Thrombolysis in retinal artery occlusion: A multicenter retrospective cohort study
P Baumgartner, L Kook, VL Altersberger, H Gensicke, E Ardila-Jurado, ...
European stroke journal 8 (4), 966-973, 2023
Deep transformation models for functional outcome prediction after acute ischemic stroke
L Herzog, L Kook, A Götschi, K Petermann, M Hänsel, J Hamann, O Dürr, ...
Biometrical Journal 65 (6), 2100379, 2023
Deep conditional transformation models for survival analysis
G Campanella, L Kook, I Häggström, T Hothorn, TJ Fuchs
arXiv preprint arXiv:2210.11366, 2022
Model-based causal feature selection for general response types
L Kook, S Saengkyongam, AR Lundborg, T Hothorn, J Peters
arXiv preprint arXiv:2309.12833, 2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20