Folgen
Matthew W. Hoffman
Matthew W. Hoffman
Google DeepMind
Bestätigte E-Mail-Adresse bei google.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Learning to learn by gradient descent by gradient descent
M Andrychowicz, M Denil, S Gomez, MW Hoffman, D Pfau, T Schaul, ...
Advances in neural information processing systems 29, 2016
21782016
Predictive entropy search for efficient global optimization of black-box functions
JM Hernández-Lobato, MW Hoffman, Z Ghahramani
Advances in neural information processing systems 27, 2014
7382014
Distributed distributional deterministic policy gradients
G Barth-Maron, MW Hoffman, D Budden, W Dabney, D Horgan, D Tb, ...
arXiv preprint arXiv:1804.08617, 2018
5872018
Portfolio Allocation for Bayesian Optimization.
MW Hoffman, E Brochu, N de Freitas
UAI, 327-336, 2011
3482011
Learning to learn without gradient descent by gradient descent
Y Chen, MW Hoffman, SG Colmenarejo, M Denil, TP Lillicrap, M Botvinick, ...
International Conference on Machine Learning, 748-756, 2017
306*2017
Learned optimizers that scale and generalize
O Wichrowska, N Maheswaranathan, MW Hoffman, SG Colmenarejo, ...
International conference on machine learning, 3751-3760, 2017
2902017
Acme: A research framework for distributed reinforcement learning
MW Hoffman, B Shahriari, J Aslanides, G Barth-Maron, N Momchev, ...
arXiv preprint arXiv:2006.00979, 2020
2242020
Large-scale visual speech recognition
B Shillingford, Y Assael, MW Hoffman, T Paine, C Hughes, U Prabhu, ...
arXiv preprint arXiv:1807.05162, 2018
1782018
On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning
MW Hoffman, B Shahriari, N de Freitas
Proceedings of the Seventeenth International Conference on Artificial …, 2014
173*2014
A general framework for constrained Bayesian optimization using information-based search
JM Hern, MA Gelbart, RP Adams, MW Hoffman, Z Ghahramani
Journal of Machine Learning Research 17 (160), 1-53, 2016
1682016
Predictive entropy search for Bayesian optimization with unknown constraints
JM Hernández-Lobato, M Gelbart, M Hoffman, R Adams, Z Ghahramani
International conference on machine learning, 1699-1707, 2015
1682015
A probabilistic model of gaze imitation and shared attention
MW Hoffman, DB Grimes, AP Shon, RPN Rao
Neural Networks 19 (3), 299-310, 2006
1032006
Rl unplugged: A suite of benchmarks for offline reinforcement learning
C Gulcehre, Z Wang, A Novikov, T Paine, S Gómez, K Zolna, R Agarwal, ...
Advances in Neural Information Processing Systems 33, 7248-7259, 2020
1002020
An entropy search portfolio for Bayesian optimization
B Shahriari, Z Wang, MW Hoffman, A Bouchard-Côté, N de Freitas
arXiv preprint arXiv:1406.4625, 2014
782014
Regularized Least Squares Temporal Difference Learning with Nested ℓ2 and ℓ1 Penalization
MW Hoffman, A Lazaric, M Ghavamzadeh, R Munos
European Workshop on Reinforcement Learning, 102-114, 2011
612011
Finite-sample analysis of Lasso-TD
M Ghavamzadeh, A Lazaric, R Munos, MW Hoffman
International Conference on Machine Learning, 2011
582011
Modular meta-learning with shrinkage
Y Chen, AL Friesen, F Behbahani, A Doucet, D Budden, M Hoffman, ...
Advances in Neural Information Processing Systems 33, 2858-2869, 2020
442020
An expectation maximization algorithm for continuous Markov Decision Processes with arbitrary reward
MW Hoffman, N de Freitas, A Doucet, J Peters
International Conference on Artificial Intelligence and Statistics, 232-239, 2009
402009
Bayesian policy learning with trans-dimensional MCMC
M Hoffman, A Doucet, N Freitas, A Jasra
Advances in neural information processing systems 20, 2007
402007
The intentional unintentional agent: Learning to solve many continuous control tasks simultaneously
S Cabi, SG Colmenarejo, MW Hoffman, M Denil, Z Wang, N Freitas
Conference on Robot Learning, 207-216, 2017
392017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20