Folgen
Tony Ribeiro
Tony Ribeiro
Postdoc, Laboratoire des Sciences du Numérique de Nantes
Bestätigte E-Mail-Adresse bei ls2n.fr - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Learning from interpretation transition
K Inoue, T Ribeiro, C Sakama
Machine Learning 94 (1), 51-79, 2014
882014
Learning prime implicant conditions from interpretation transition
T Ribeiro, K Inoue
Inductive logic programming, 108-125, 2015
302015
Systems resilience: a challenge problem for dynamic constraint-based agent systems
N Schwind, T Okimoto, K Inoue, H Chan, T Ribeiro, K Minami, ...
Proceedings of the 2013 international conference on Autonomous agents and …, 2013
292013
Learning relational dynamics of stochastic domains for planning
D Martínez, G Alenya, C Torras, T Ribeiro, K Inoue
Proceedings of the International Conference on Automated Planning and …, 2016
282016
Relational reinforcement learning for planning with exogenous effects
D Martınez, G Alenya, T Ribeiro, K Inoue, C Torras
Journal of Machine Learning Research 18 (78), 1-44, 2017
272017
Learning delayed influences of biological systems
T Ribeiro, M Magnin, K Inoue, C Sakama
Frontiers in bioengineering and biotechnology 2, 81, 2015
232015
Learning probabilistic action models from interpretation transitions
D Martínez Martínez, T Ribeiro, K Inoue, G Alenyà Ribas, C Torras
Proceedings of the technical communications of the 31st international …, 2015
232015
Learning multi-valued biological models with delayed influence from time-series observations
T Ribeiro, M Magnin, K Inoue, C Sakama
2015 IEEE 14th international conference on machine learning and applications …, 2015
172015
Learning dynamics with synchronous, asynchronous and general semantics
T Ribeiro, M Folschette, M Magnin, O Roux, K Inoue
International conference on inductive logic programming, 118-140, 2018
152018
Mission oriented robust multi-team formation and its application to robot rescue simulation
T Okimoto, T Ribeiro, D Bouchabou, K Inoue
Twenty-Fifth International Joint Conference on Artificial Intelligence …, 2016
152016
Inductive learning from state transitions over continuous domains
T Ribeiro, S Tourret, M Folschette, M Magnin, D Borzacchiello, F Chinesta, ...
International Conference on Inductive Logic Programming, 124-139, 2017
122017
Cyber security problem based on multi-objective distributed constraint optimization technique
T Okimoto, N Ikegai, K Inoue, H Okada, T Ribeiro, H Maruyama
2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks …, 2013
122013
Symbolic AI for XAI: Evaluating LFIT inductive programming for fair and explainable automatic recruitment
A Ortega, J Fierrez, A Morales, Z Wang, T Ribeiro
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2021
112021
Model and algorithm for dynamic multi-objective distributed optimization
M Clement, T Okimoto, T Ribeiro, K Inoue
International Conference on Principles and Practice of Multi-Agent Systems …, 2013
82013
ASP for construction and validation of regulatory biological networks
A Rocca, N Mobilia, E Fanchon, T Ribeiro, L Trilling, K Inoue
Logical Modeling of Biological Systems, 167-206, 2014
72014
Modeling delayed dynamics in biological regulatory networks from time series data
E Ben Abdallah, T Ribeiro, M Magnin, O Roux, K Inoue
Algorithms 10 (1), 8, 2017
62017
Inference of delayed biological regulatory networks from time series data
E Ben Abdallah, T Ribeiro, M Magnin, O Roux, K Inoue
International Conference on Computational Methods in Systems Biology, 30-48, 2016
62016
Modeling and Algorithm for Dynamic Multi-objective Weighted Constraint Satisfaction Problem.
T Okimoto, T Ribeiro, M Clement, K Inoue
ICAART (1), 420-427, 2014
62014
Learning any semantics for dynamical systems represented by logic programs
T Ribeiro, M Folschette, M Magnin, K Inoue
52021
Les enjeux de l'inférence de modèles dynamiques des systèmes biologiques à partir de séries temporelles
T Ribeiro, M Folschette, L Trilling, N Glade, K Inoue, M Magnin, O Roux
52020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20