Folgen
Zeyu Zheng
Titel
Zitiert von
Zitiert von
Jahr
Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on {GPU} Clusters
H Zhang, Z Zheng, S Xu, W Dai, Q Ho, X Liang, Z Hu, J Wei, P Xie, ...
2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), 181-193, 2017
3082017
On learning intrinsic rewards for policy gradient methods
Z Zheng, J Oh, S Singh
Advances in Neural Information Processing Systems, 4644-4654, 2018
1342018
Parallelizing sequential graph computations
W Fan, J Xu, Y Wu, W Yu, J Jiang, Z Zheng, B Zhang, Y Cao, C Tian
Proceedings of the 2017 ACM International Conference on Management of Data …, 2017
902017
What Can Learned Intrinsic Rewards Capture?
Z Zheng, J Oh, M Hessel, Z Xu, M Kroiss, H Van Hasselt, D Silver, S Singh
International Conference on Machine Learning, 11436-11446, 2020
402020
Automated multi-layer optical design via deep reinforcement learning
H Wang, Z Zheng, C Ji, LJ Guo
Machine Learning: Science and Technology 2 (2), 025013, 2021
24*2021
Adaptive Pairwise Weights for Temporal Credit Assignment
Z Zheng, R Vuorio, R Lewis, S Singh
2*2022
Learning State Representations from Random Deep Action-conditional Predictions
Z Zheng, V Veeriah, R Vuorio, RL Lewis, S Singh
Advances in Neural Information Processing Systems 34, 23679-23691, 2021
12021
GrASP: Gradient-Based Affordance Selection for Planning
V Veeriah, Z Zheng, R Lewis, S Singh
arXiv preprint arXiv:2202.04772, 2022
2022
Advances in Deep Reinforcement Learning: Intrinsic Rewards, Temporal Credit Assignment, State Representations, and Value-equivalent Models
Z Zheng
2022
Reinforcement learning using meta-learned intrinsic rewards
Z Zheng, J Oh, SS Baveja
US Patent App. 17/033,410, 2021
2021
Supplementary Material: On Learning Intrinsic Rewards for Policy Gradient Methods
Z Zheng, J Oh, S Singh
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–11