Biological network analysis with deep learning G Muzio, L O’Bray, K Borgwardt Briefings in bioinformatics 22 (2), 1515-1530, 2021 | 72 | 2021 |
Graph Kernels: State-of-the-Art and Future Challenges K Borgwardt, E Ghisu, F Llinares-López, L O’Bray, B Rieck Foundations and Trends in Machine Learning 13 (5-6), 531-712, 2020 | 56 | 2020 |
Structure-Aware Transformer for Graph Representation Learning D Chen, L O'Bray, K Borgwardt International Conference on Machine Learning (ICML), 2022 | 14 | 2022 |
Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions L O'Bray, M Horn, B Rieck, K Borgwardt International Conference on Learning Representations (ICLR), 2021 | 10 | 2021 |
Filtration curves for graph representation L O'Bray, B Rieck, K Borgwardt Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021 | 7 | 2021 |
Taxonomy of benchmarks in graph representation learning R Liu, S Cantürk, F Wenkel, D Sandfelder, D Kreuzer, A Little, S McGuire, ... arXiv preprint arXiv:2206.07729, 2022 | 1 | 2022 |
networkGWAS: A network-based approach for genome-wide association studies in structured populations G Muzio, L O’Bray, L Meng-Papaxanthos, J Klatt, K Borgwardt bioRxiv, 2021.11. 11.468206, 2021 | | 2021 |
The magnitude vector of images MF Adamer, E De Brouwer, L O'Bray, B Rieck arXiv preprint arXiv:2110.15188, 2021 | | 2021 |
Towards a Taxonomy of Graph Learning Datasets R Liu, S Cantürk, F Wenkel, D Sandfelder, D Kreuzer, A Little, S McGuire, ... arXiv preprint arXiv:2110.14809, 2021 | | 2021 |