Maximilian Karl
Maximilian Karl
Research Scientist, Data:Lab, Volkswagen Group
Verified email at
Cited by
Cited by
Deep variational bayes filters: Unsupervised learning of state space models from raw data
M Karl, M Soelch, J Bayer, P van der Smagt
arXiv preprint arXiv:1605.06432, 2016
Stable reinforcement learning with autoencoders for tactile and visual data
H van Hoof, N Chen, M Karl, P van der Smagt, J Peters
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2016
Dynamic movement primitives in latent space of time-dependent variational autoencoders
N Chen, M Karl, P van der Smagt
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids …, 2016
Unsupervised Real-Time Control through Variational Empowerment
M Karl, M Soelch, P Becker-Ehmck, D Benbouzid, P van der Smagt, ...
arXiv preprint arXiv:1710.05101, 2017
Variational Inference with Hamiltonian Monte Carlo
C Wolf, M Karl, P van der Smagt
arXiv preprint arXiv:1609.08203, 2016
Learning to Fly via Deep Model-Based Reinforcement Learning
P Becker-Ehmck, M Karl, J Peters, P van der Smagt
arXiv preprint arXiv:2003.08876, 2020
Efficient Empowerment
M Karl, J Bayer, P van der Smagt
arXiv preprint arXiv:1509.08455, 2015
Continuum worm-like robotic mechanism with decentral control architecture
M Eder, M Karl, A Knoll, S Riesner
2014 IEEE International Conference on Automation Science and Engineering …, 2014
Fast adaptive weight noise
J Bayer, M Karl, D Korhammer, P van der Smagt
arXiv preprint arXiv:1507.05331, 2015
Design of an inherently safe worm-like robot
M Eder, M Karl, F Schultheiß, J Schürmann, A Knoll, S Riesner
2013 IEEE International Symposium on Safety, Security, and Rescue Robotics …, 2013
Compliant worm-like robotic mechanism with decentrally controlled pneumatic artificial muscles
M Eder, M Karl, A Knoll, S Riesner
2012 First International Conference on Innovative Engineering Systems, 243-248, 2012
Unsupervised preprocessing for Tactile Data
M Karl, J Bayer, P van der Smagt
arXiv preprint arXiv:1606.07312, 2016
Beta DVBF: Learning State-Space Models for Control from High Dimensional Observations
N Das, M Karl, P Becker-Ehmck, P van der Smagt
arXiv preprint arXiv:1911.00756, 2019
ML-based tactile sensor calibration: A universal approach
M Karl, A Lohrer, D Shah, F Diehl, M Fiedler, S Ognawala, J Bayer, ...
arXiv preprint arXiv:1606.06588, 2016
Improving approximate RPCA with a K-sparsity prior
M Karl, C Osendorfer
arXiv preprint arXiv:1412.8291, 2014
Unsupervised Control
M Karl
Technische Universität München, 2020
The system can't perform the operation now. Try again later.
Articles 1–16