Stephan Günnemann
Stephan Günnemann
Professor of Computer Science, Technical University of Munich
Bestätigte E-Mail-Adresse bei in.tum.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Evaluating clustering in subspace projections of high dimensional data
E Müller, S Günnemann, I Assent, T Seidl
Proceedings of the VLDB Endowment 2 (1), 1270-1281, 2009
3312009
Adversarial attacks on neural networks for graph data
D Zügner, A Akbarnejad, S Günnemann
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge …, 2018
2872018
Predict then propagate: Graph neural networks meet personalized pagerank
J Klicpera, A Bojchevski, S Günnemann
International Conference on Learning Representations, 2019, 2019
198*2019
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
A Bojchevski, S Günnemann
International Conference on Learning Representations (ICLR), 2018
195*2018
Netgan: Generating graphs via random walks
A Bojchevski, O Shchur, D Zügner, S Günnemann
ICML 2018, 2018
1672018
Pitfalls of graph neural network evaluation
O Shchur, M Mumme, A Bojchevski, S Günnemann
Relational Representation Learning Workshop, NIPS 2018, 2018
1602018
On using class-labels in evaluation of clusterings
I Färber, S Günnemann, HP Kriegel, P Kröger, E Müller, E Schubert, ...
MultiClust: 1st international workshop on discovering, summarizing and using …, 2010
1362010
Subspace clustering meets dense subgraph mining: A synthesis of two paradigms
S Günnemann, I Färber, B Boden, T Seidl
2010 IEEE international conference on data mining, 845-850, 2010
1302010
Adversarial attacks on graph neural networks via meta learning
D Zügner, S Günnemann
International Conference on Learning Representations (ICLR), 2019
1202019
Mining coherent subgraphs in multi-layer graphs with edge labels
B Boden, S Günnemann, H Hoffmann, T Seidl
Proceedings of the 18th ACM SIGKDD international conference on Knowledge …, 2012
1192012
Introduction to tensor decompositions and their applications in machine learning
S Rabanser, O Shchur, S Günnemann
arXiv preprint arXiv:1711.10781, 2017
1032017
Com2: fast automatic discovery of temporal (‘comet’) communities
M Araujo, S Papadimitriou, S Günnemann, C Faloutsos, P Basu, A Swami, ...
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 271-283, 2014
1012014
Adversarial attacks on node embeddings via graph poisoning
A Bojchevski, S Günnemann
International Conference on Machine Learning, 695-704, 2019
96*2019
Birdnest: Bayesian inference for ratings-fraud detection
B Hooi, N Shah, A Beutel, S Günnemann, L Akoglu, M Kumar, D Makhija, ...
Proceedings of the 2016 SIAM International Conference on Data Mining, 495-503, 2016
942016
Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data
E Müller, I Assent, S Günnemann, R Krieger, T Seidl
2009 Ninth IEEE International Conference on Data Mining, 377-386, 2009
872009
Discovering multiple clustering solutions: Grouping objects in different views of the data
E Muller, S Gunnemann, I Farber, T Seidl
2012 IEEE 28th International Conference on Data Engineering, 1207-1210, 2012
702012
Detecting anomalies in dynamic rating data: A robust probabilistic model for rating evolution
S Günnemann, N Günnemann, C Faloutsos
Proceedings of the 20th ACM SIGKDD international conference on Knowledge …, 2014
642014
DB-CSC: a density-based approach for subspace clustering in graphs with feature vectors
S Günnemann, B Boden, T Seidl
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2011
642011
Directional message passing for molecular graphs
J Klicpera, J Groß, S Günnemann
International Conference on Learning Representations (ICLR), 2020
602020
Diffusion improves graph learning
J Klicpera, S Weißenberger, S Günnemann
Neural Information Processing Systems (NeurIPS), 2019
592019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20