Quantum integrable systems related to Lie algebras MA Olshanetsky, AM Perelomov Physics Reports 94 (6), 313-404, 1983 | 1087 | 1983 |

Classical integrable finite-dimensional systems related to Lie algebras MA Olshanetsky, AM Perelomov Physics Reports 71 (5), 313-400, 1981 | 814 | 1981 |

Two-dimensional generalized Toda lattice AV Mikhailov, MA Olshanetsky, AM Perelomov Communications in Mathematical Physics 79, 473-488, 1981 | 461 | 1981 |

Ordinary differential equations and smooth dynamical systems DV Anosov, SK Aranson, VI Arnold, IU Bronshtein, YS Il'yashenko, ... Springer-Verlag New York, Inc., 1997 | 393* | 1997 |

Wess-Zumino-Witten model as a theory of free fields A Gerasimov, A Morozov, M Olshanetsky, A Marshakov, S Shatashvili International Journal of Modern Physics A 5 (13), 2495-2589, 1990 | 330 | 1990 |

Completely integrable Hamiltonian systems connected with semisimple Lie algebras MA Olshanetsky, AM Perelomov Inventiones mathematicae 37 (2), 93-108, 1976 | 304 | 1976 |

Quantum completely integrable systems connected with semi-simple Lie algebras MA Olshanetsky, AM Perelomov Letters in Mathematical Physics 2, 7-13, 1977 | 148 | 1977 |

Supersymmetric two-dimensional Toda lattice MA Olshanetsky Communications in Mathematical Physics 88, 63-76, 1983 | 144 | 1983 |

Explicit solutions of classical generalized Toda models MA Olshanetsky, AM Perelomov Inventiones mathematicae 54 (3), 261-269, 1979 | 140 | 1979 |

Hitchin systems–symplectic Hecke correspondence and two-dimensional version AM Levin, MA Olshanetsky, A Zotov Communications in mathematical physics 236, 93-133, 2003 | 111 | 2003 |

Properties of the zeros of the classical polynomials and of the Bessel functions S Ahmed, M Bruschi, F Calogero, MA Olshanetsky, AM Perelomov Nuovo Cimento B;(Italy) 49 (2), 1979 | 106 | 1979 |

Description of a class of superstring compactifications related to semi-simple Lie algebras DG Markushevich, MA Olshanetsky, AM Perelomov Communications in Mathematical Physics 111, 247-274, 1987 | 105 | 1987 |

Completely integrable Hamiltonian systems connected with semisimple Lie algebras, Inventions Math. 37 (1976) 93–108; MA Olshanetsky, AM Perelomov, Classical integrable finite … MA Olshanetsky Phys. Rep. C 71, 314-400, 1981 | 102 | 1981 |

Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature MA Olshanetsky, AM Perelomov Lettere al Nuovo Cimento (1971-1985) 16, 333-339, 1976 | 101 | 1976 |

Quantum integrable systems related to Lie algebras MA Olshanetsky, AM Perelomov Phys. Rep 94 (1), 983, 0 | 61 | |

Hierarchies of isomonodromic deformations and Hitchin systems AY Mozorov, MA Olshanetsky, AM Levin Moscow Seminar in Mathematical Physics, 223-262, 1999 | 59 | 1999 |

Relativistic classical integrable tops and quantum R-matrices A Levin, M Olshanetsky, A Zotov Journal of High Energy Physics 2014 (7), 1-39, 2014 | 52 | 2014 |

Integrable systems and finite-dimensional Lie algebras MA Olshanetsky, AM Perelomov Dynamical Systems VII: Integrable Systems Nonholonomic Dynamical Systems, 87-116, 1994 | 50* | 1994 |

Magnetic collapse near zero points of the magnetic field SV Bulanov, MA Olshanetsky Physics Letters A 100 (1), 35-38, 1984 | 50 | 1984 |

Planck constant as spectral parameter in integrable systems and KZB equations A Levin, M Olshanetsky, A Zotov Journal of High Energy Physics 2014 (10), 1-29, 2014 | 49 | 2014 |