Folgen
Peter Kandolf
Peter Kandolf
Department of Mathematics, University of Innsbruck
Bestätigte E-Mail-Adresse bei uibk.ac.at - Startseite
Titel
Zitiert von
Zitiert von
Jahr
The Leja method revisited: backward error analysis for the matrix exponential
M Caliari, P Kandolf, A Ostermann, S Rainer
SIAM Journal on Scientific Computing 38 (3), A1639-A1661, 2016
742016
Comparison of software for computing the action of the matrix exponential
M Caliari, P Kandolf, A Ostermann, S Rainer
BIT Numerical Mathematics 54, 113-128, 2014
702014
Magnus integrators on multicore CPUs and GPUs
N Auer, L Einkemmer, P Kandolf, A Ostermann
Computer Physics Communications 228, 115-122, 2018
272018
Computing low‐rank approximations of the Fréchet derivative of a matrix function using Krylov subspace methods
P Kandolf, A Koskela, SD Relton, M Schweitzer
Numerical Linear Algebra with Applications 28 (6), e2401, 2021
202021
Computing the action of trigonometric and hyperbolic matrix functions
NJ Higham, P Kandolf
SIAM Journal on Scientific Computing 39 (2), A613-A627, 2017
172017
Backward error analysis of polynomial approximations for computing the action of the matrix exponential
M Caliari, P Kandolf, F Zivcovich
BIT Numerical Mathematics 58, 907-935, 2018
122018
A block Krylov method to compute the action of the Fréchet derivative of a matrix function on a vector with applications to condition number estimation
P Kandolf, SD Relton
SIAM Journal on Scientific Computing 39 (4), A1416-A1434, 2017
102017
A residual based error estimate for Leja interpolation of matrix functions
P Kandolf, A Ostermann, S Rainer
Linear Algebra and its Applications 456, 157-173, 2014
62014
Computationally efficient exponential integrators
P Kandolf
Department of Mathematics, University of Innsbruck, 2016
32016
Exponential integrators
P Kandolf
McMaster University, 2011
32011
Innovative integrators for time dependent PDEs
P Kandolf
na, 2011
12011
Image processing using Wavelets and Tight Frames
P Kandolf
2009
The Leja method in Python
P Kandolf, A Ostermann
The backward error of the Leja method
P Kandolf
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–14