Follow
Rohin Shah
Rohin Shah
Research Scientist, Google DeepMind
Verified email at deepmind.com - Homepage
Title
Cited by
Cited by
Year
On the utility of learning about humans for human-AI coordination
M Carroll, R Shah, MK Ho, T Griffiths, S Seshia, P Abbeel, A Dragan
Advances in Neural Information Processing Systems, 5174-5185, 2019
3972019
Chlorophyll: Synthesis-aided compiler for low-power spatial architectures
PM Phothilimthana, T Jelvis, R Shah, N Totla, S Chasins, R Bodik
ACM SIGPLAN Notices 49 (6), 396-407, 2014
912014
Preferences Implicit in the State of the World
R Shah, D Krasheninnikov, J Alexander, P Abbeel, A Dragan
arXiv preprint arXiv:1902.04198, 2019
87*2019
Optimal Policies Tend to Seek Power
AM Turner, L Smith, R Shah, A Critch, P Tadepalli
arXiv preprint arXiv:1912.01683, 2019
84*2019
On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference
R Shah, N Gundotra, P Abbeel, A Dragan
International Conference on Machine Learning, 5670-5679, 2019
732019
Goal Misgeneralization: Why Correct Specifications Aren't Enough For Correct Goals
R Shah, V Varma, R Kumar, M Phuong, V Krakovna, J Uesato, Z Kenton
arXiv preprint arXiv:2210.01790, 2022
64*2022
The MAGICAL Benchmark for Robust Imitation
S Toyer, R Shah, A Critch, S Russell
Advances in Neural Information Processing Systems 33, 2020
492020
Does circuit analysis interpretability scale? evidence from multiple choice capabilities in chinchilla
T Lieberum, M Rahtz, J Kramár, N Nanda, G Irving, R Shah, V Mikulik
arXiv preprint arXiv:2307.09458, 2023
482023
Explaining grokking through circuit efficiency
V Varma, R Shah, Z Kenton, J Kramár, R Kumar
arXiv preprint arXiv:2309.02390, 2023
352023
An Empirical Investigation of Representation Learning for Imitation
X Chen, S Toyer, C Wild, S Emmons, I Fischer, KH Lee, N Alex, SH Wang, ...
Thirty-fifth Conference on Neural Information Processing Systems Datasets …, 2021
302021
Active Inverse Reward Design
S Mindermann, R Shah, A Gleave, D Hadfield-Menell
arXiv preprint arXiv:1809.03060, 2018
302018
Evaluating the Robustness of Collaborative Agents
P Knott, M Carroll, S Devlin, K Ciosek, K Hofmann, AD Dragan, R Shah
arXiv preprint arXiv:2101.05507, 2021
292021
Benefits of Assistance over Reward Learning
R Shah, P Freire, N Alex, R Freedman, D Krasheninnikov, L Chan, ...
292020
The MineRL BASALT Competition on Learning from Human Feedback
R Shah, C Wild, SH Wang, N Alex, B Houghton, W Guss, S Mohanty, ...
arXiv preprint arXiv:2107.01969, 2021
262021
Choice Set Misspecification in Reward Inference
R Freedman, R Shah, A Dragan
CEUR Workshop Proceedings, 2020
172020
Improving Dictionary Learning with Gated Sparse Autoencoders
S Rajamanoharan, A Conmy, L Smith, T Lieberum, V Varma, J Kramár, ...
arXiv preprint arXiv:2404.16014, 2024
162024
Evaluating Frontier Models for Dangerous Capabilities
M Phuong, M Aitchison, E Catt, S Cogan, A Kaskasoli, V Krakovna, ...
arXiv preprint arXiv:2403.13793, 2024
162024
SIRL: Similarity-based Implicit Representation Learning
A Bobu, Y Liu, R Shah, DS Brown, AD Dragan
Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot …, 2023
142023
AtP*: An efficient and scalable method for localizing LLM behaviour to components
J Kramár, T Lieberum, R Shah, N Nanda
arXiv preprint arXiv:2403.00745, 2024
132024
Towards Solving Fuzzy Tasks with Human Feedback: A Retrospective of the MineRL BASALT 2022 Competition
S Milani, A Kanervisto, K Ramanauskas, S Schulhoff, B Houghton, ...
arXiv preprint arXiv:2303.13512, 2023
112023
The system can't perform the operation now. Try again later.
Articles 1–20