Folgen
James P. Hobert
James P. Hobert
Professor of Statistics, University of Florida
Bestätigte E-Mail-Adresse bei ufl.edu
Titel
Zitiert von
Zitiert von
Jahr
Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
JG Booth, JP Hobert
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 1999
8121999
The effect of improper priors on Gibbs sampling in hierarchical linear mixed models
JP Hobert, G Casella
Journal of the American Statistical Association 91 (436), 1461-1473, 1996
6491996
Honest exploration of intractable probability distributions via Markov chain Monte Carlo
GL Jones, JP Hobert
Statistical Science, 312-334, 2001
3662001
Random‐effects modeling of categorical response data
A Agresti, JG Booth*, JP Hobert*, B Caffo*
Sociological Methodology 30 (1), 27-80, 2000
2722000
Standard errors of prediction in generalized linear mixed models
JG Booth, JP Hobert
Journal of the American Statistical Association 93 (441), 262-272, 1998
2411998
Negative binomial loglinear mixed models
JG Booth, G Casella, H Friedl, JP Hobert
Statistical Modelling 3 (3), 179-191, 2003
1752003
On the applicability of regenerative simulation in Markov chain Monte Carlo
JP Hobert, GL Jones, B Presnell, JS Rosenthal
Biometrika 89 (4), 731-743, 2002
1532002
Clustering using objective functions and stochastic search
JG Booth, G Casella, JP Hobert
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2008
1462008
Sufficient burn-in for Gibbs samplers for a hierarchical random effects model
GL Jones, JP Hobert
1462004
The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic
HM Choi, JP Hobert
1162013
Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model
JP Hobert, CJ Geyer
Journal of Multivariate Analysis 67 (2), 414-430, 1998
1041998
Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression
V Roy, JP Hobert
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2007
1012007
A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms
JP Hobert, D Marchev
972008
Functional compatibility, Markov chains, and Gibbs sampling with improper posteriors
JP Hobert, G Casella
Journal of Computational and Graphical Statistics 7 (1), 42-60, 1998
871998
A survey of Monte Carlo algorithms for maximizing the likelihood of a two-stage hierarchical model
JG Booth, JP Hobert, W Jank
Statistical Modelling 1 (4), 333-349, 2001
782001
The data augmentation algorithm: Theory and methodology
JP Hobert
Handbook of Markov Chain Monte Carlo, 253-293, 2011
662011
Geometric Ergodicity of van Dyk and Meng's Algorithm for the Multivariate Student's t Model
D Marchev, JP Hobert
Journal of the American Statistical Association 99 (465), 228-238, 2004
582004
Geometric ergodicity of the Bayesian lasso
K Khare, JP Hobert
572013
Block Gibbs sampling for Bayesian random effects models with improper priors: Convergence and regeneration
A Tan, JP Hobert
Journal of Computational and Graphical Statistics 18 (4), 861-878, 2009
522009
Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression
K Khare, JP Hobert
Journal of Multivariate Analysis 112, 108-116, 2012
492012
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20