The (un) reliability of saliency methods PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ... Explainable AI: Interpreting, explaining and visualizing deep learning, 267-280, 2019 | 755 | 2019 |
iNNvestigate neural networks! M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ... Journal of machine learning research 20 (93), 1-8, 2019 | 422 | 2019 |
Learning how to explain neural networks: Patternnet and patternattribution PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne arXiv preprint arXiv:1705.05598, 2017 | 406 | 2017 |
Explanations can be manipulated and geometry is to blame AK Dombrowski, M Alber, C Anders, M Ackermann, KR Müller, P Kessel Advances in neural information processing systems 32, 2019 | 364 | 2019 |
Artificial intelligence and pathology: from principles to practice and future applications in histomorphology and molecular profiling A Stenzinger, M Alber, M Allgäuer, P Jurmeister, M Bockmayr, J Budczies, ... Seminars in cancer biology 84, 129-143, 2022 | 65 | 2022 |
Patternnet and patternlrp–improving the interpretability of neural networks PJ Kindermans, KT Schütt, M Alber, KR Müller, S Dähne arXiv preprint arXiv:1705.05598 3, 2017 | 45 | 2017 |
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ... Cham: Springer International Publishing,, 2019 | 32 | 2019 |
Toward explainable artificial intelligence for precision pathology F Klauschen, J Dippel, P Keyl, P Jurmeister, M Bockmayr, A Mock, ... Annual Review of Pathology: Mechanisms of Disease 19 (1), 541-570, 2024 | 22 | 2024 |
Backprop evolution M Alber, I Bello, B Zoph, PJ Kindermans, P Ramachandran, Q Le arXiv preprint arXiv:1808.02822, 2018 | 17 | 2018 |
An empirical study on the properties of random bases for kernel methods M Alber, PJ Kindermans, K Schütt, KR Müller, F Sha Advances in Neural Information Processing Systems 30, 2017 | 17 | 2017 |
Interpretable deep neural network to predict estrogen receptor status from haematoxylin-eosin images P Seegerer, A Binder, R Saitenmacher, M Bockmayr, M Alber, ... Artificial Intelligence and Machine Learning for Digital Pathology: State-of …, 2020 | 15 | 2020 |
Software and application patterns for explanation methods M Alber Explainable AI: interpreting, explaining and visualizing deep learning, 399-433, 2019 | 15 | 2019 |
Learning how to explain neural networks: Patternnet and patternattribution (2017) PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne arXiv preprint arXiv:1705.05598, 2018 | 14 | 2018 |
Distributed optimization of multi-class SVMs M Alber, J Zimmert, U Dogan, M Kloft PloS one 12 (6), e0178161, 2017 | 14 | 2017 |
RudolfV: a foundation model by pathologists for pathologists J Dippel, B Feulner, T Winterhoff, S Schallenberg, G Dernbach, A Kunft, ... arXiv preprint arXiv:2401.04079, 2024 | 13 | 2024 |
Deep learning assisted diagnosis of onychomycosis on whole-slide images P Jansen, A Creosteanu, V Matyas, A Dilling, A Pina, A Saggini, ... Journal of Fungi 8 (9), 912, 2022 | 9 | 2022 |
Clarifying assumptions about artificial intelligence before revolutionising patent law D Kim, M Alber, MW Kwok, J MitroviĆ, C Ramirez-Atencia, JÚARÍ PÉrez, ... GRUR International 71 (4), 295-321, 2022 | 7 | 2022 |
Analysing cerebrospinal fluid with explainable deep learning: From diagnostics to insights L Schweizer, P Seegerer, H Kim, R Saitenmacher, A Muench, L Barnick, ... Neuropathology and Applied Neurobiology 49 (1), e12866, 2023 | 5 | 2023 |
Ten Assumptions About Artificial Intelligence That Can Mislead Patent Law Analysis D Kim, M Alber, MW Kwok, J Mitrovic, C Ramirez-Atencia, ... Max Planck Institute for Innovation & Competition Research Paper, 2021 | 4 | 2021 |
How to iNNvestigate neural networks' predictions! M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ... | 4 | 2018 |