Jeremy Lacomis
Cited by
Cited by
Dire: A neural approach to decompiled identifier naming
J Lacomis, P Yin, E Schwartz, M Allamanis, C Le Goues, G Neubig, ...
2019 34th IEEE/ACM International Conference on Automated Software …, 2019
Meaningful Variable Names for Decompiled Code: A Machine Translation Approach
A Jaffe, J Lacomis, EJ Schwartz, C Le Goues, B Vasilescu
International Conference on Program Comprehension (ICPC), 20-30, 2018
Automatically exploring tradeoffs between software output fidelity and energy costs
J Dorn, J Lacomis, W Weimer, S Forrest
IEEE Transactions on Software Engineering 45 (3), 219-236, 2017
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
Q Chen, J Lacomis, EJ Schwartz, G Neubig, B Vasilescu, C Le Goues
arXiv preprint arXiv:2112.02650, 2021
Augmenting decompiler output with learned variable names and types
Q Chen, J Lacomis, EJ Schwartz, C Le Goues, G Neubig, B Vasilescu
31st USENIX Security Symposium (USENIX Security 22), 4327-4343, 2022
Learning to Superoptimize Real-world Programs
A Shypula, P Yin, J Lacomis, C Le Goues, E Schwartz, G Neubig
arXiv preprint arXiv:2109.13498, 2021
A Turing Test for Genetic Improvement
A Afzal, J Lacomis, C Le Goues, CS Timperley
Genetic Improvement Workshop, 17-18, 2018
Statistical Machine Translation is a Natural Fit for Automatic Identifier Renaming in Software Source Code
J Lacomis, A Jaffe, EJ Schwartz, C Le Goues, B Vasilescu
Statistical Modeling of Natural Software Corpora, 2018 AAAI Workshop, 2018
DIRE and its Data: Neural Decompiled Variable Renamings with Respect to Software Class
L Dramko, J Lacomis, P Yin, EJ Schwartz, M Allamanis, G Neubig, ...
ACM Transactions on Software Engineering and Methodology, 2022
Automatically Reducing Energy Consumption of Software
J Lacomis, J Dorn, W Weimer, S Forrest
The system can't perform the operation now. Try again later.
Articles 1–10