Folgen
Qilong Wang
Qilong Wang
Bestätigte E-Mail-Adresse bei tju.edu.cn - Startseite
Titel
Zitiert von
Zitiert von
Jahr
ECA-Net: Efficient channel attention for deep convolutional neural networks
Q Wang, B Wu, P Zhu, P Li, W Zuo, Q Hu
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
49082020
Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation
H Yan, Y Ding, P Li, Q Wang, Y Xu, W Zuo
Proceedings of the IEEE conference on computer vision and pattern …, 2017
6882017
Global second-order pooling convolutional networks
Z Gao, J Xie, Q Wang, P Li
Proceedings of the IEEE/CVF Conference on computer vision and pattern …, 2019
4272019
Towards faster training of global covariance pooling networks by iterative matrix square root normalization
P Li, J Xie, Q Wang, Z Gao
Proceedings of the IEEE conference on computer vision and pattern …, 2018
3252018
Is second-order information helpful for large-scale visual recognition?
P Li, J Xie, Q Wang, W Zuo
Proceedings of the IEEE international conference on computer vision, 2070-2078, 2017
3072017
Neural blind deconvolution using deep priors
D Ren, K Zhang, Q Wang, Q Hu, W Zuo
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
2922020
Joint distribution matters: Deep brownian distance covariance for few-shot classification
J Xie, F Long, J Lv, Q Wang, P Li
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022
1602022
Log-Euclidean kernels for sparse representation and dictionary learning
P Li, Q Wang, W Zuo, L Zhang
Proceedings of the IEEE international conference on computer vision, 1601-1608, 2013
1522013
G2DeNet: Global Gaussian distribution embedding network and its application to visual recognition
Q Wang, P Li, L Zhang
Proceedings of the IEEE conference on computer vision and pattern …, 2017
1312017
Deep CNNs meet global covariance pooling: Better representation and generalization
Q Wang, J Xie, W Zuo, L Zhang, P Li
IEEE transactions on pattern analysis and machine intelligence 43 (8), 2582-2597, 2020
1072020
A novel earth mover's distance methodology for image matching with gaussian mixture models
P Li, Q Wang, L Zhang
Proceedings of the IEEE International Conference on Computer Vision, 1689-1696, 2013
1042013
Multi-scale location-aware kernel representation for object detection
H Wang, Q Wang, M Gao, P Li, W Zuo
Proceedings of the IEEE conference on computer vision and pattern …, 2018
992018
Detection, tracking, and counting meets drones in crowds: A benchmark
L Wen, D Du, P Zhu, Q Hu, Q Wang, L Bo, S Lyu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
902021
Local log-Euclidean multivariate Gaussian descriptor and its application to image classification
P Li, Q Wang, H Zeng, L Zhang
IEEE transactions on pattern analysis and machine intelligence 39 (4), 803-817, 2016
772016
RAID-G: Robust estimation of approximate infinite dimensional Gaussian with application to material recognition
Q Wang, P Li, W Zuo, L Zhang
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
732016
Weighted and class-specific maximum mean discrepancy for unsupervised domain adaptation
H Yan, Z Li, Q Wang, P Li, Y Xu, W Zuo
IEEE Transactions on Multimedia 22 (9), 2420-2433, 2019
702019
Data augmentation for object detection via progressive and selective instance-switching
H Wang, Q Wang, F Yang, W Zhang, W Zuo
arXiv preprint arXiv:1906.00358, 2019
632019
Local Log-Euclidean Covariance Matrix (L2ECM) for Image Representation and Its Applications
P Li, Q Wang
Computer Vision–ECCV 2012: 12th European Conference on Computer Vision …, 2012
572012
Boosting weakly supervised object detection via learning bounding box adjusters
B Dong, Z Huang, Y Guo, Q Wang, Z Niu, W Zuo
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
562021
Self-attention relation network for few-shot learning
B Hui, P Zhu, Q Hu, Q Wang
2019 IEEE international conference on Multimedia & Expo Workshops (ICMEW …, 2019
522019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20