An end-to-end deep learning architecture for graph classification M Zhang, Z Cui, M Neumann, Y Chen Thirty-Second AAAI Conference on Artificial Intelligence, 2018 | 135 | 2018 |
Propagation kernels: efficient graph kernels from propagated information M Neumann, R Garnett, C Bauckhage, K Kersting Machine Learning 102 (2), 209-245, 2016 | 63 | 2016 |
Efficient graph kernels by randomization M Neumann, N Patricia, R Garnett, K Kersting Joint European Conference on Machine Learning and Knowledge Discovery in …, 2012 | 50 | 2012 |
Benchmark data sets for graph kernels, 2016 K Kersting, NM Kriege, C Morris, P Mutzel, M Neumann URL http://graphkernels. cs. tu-dortmund. de, 2016 | 36 | 2016 |
Stacked Gaussian process learning M Neumann, K Kersting, Z Xu, D Schulz 2009 Ninth IEEE International Conference on Data Mining, 387-396, 2009 | 28 | 2009 |
Explicit versus implicit graph feature maps: A computational phase transition for walk kernels N Kriege, M Neumann, K Kersting, P Mutzel 2014 IEEE International Conference on Data Mining, 881-886, 2014 | 23 | 2014 |
Erosion band features for cell phone image based plant disease classification M Neumann, L Hallau, B Klatt, K Kersting, C Bauckhage 2014 22nd International Conference on Pattern Recognition, 3315-3320, 2014 | 21 | 2014 |
Benchmark data sets for graph kernels K Kersting, NM Kriege, C Morris, P Mutzel, M Neumann | 19 | 2016 |
pygps: A python library for gaussian process regression and classification M Neumann, S Huang, DE Marthaler, K Kersting The Journal of Machine Learning Research 16 (1), 2611-2616, 2015 | 16 | 2015 |
Automated identification of sugar beet diseases using smartphones L Hallau, M Neumann, B Klatt, B Kleinhenz, T Klein, C Kuhn, M Röhrig, ... Plant pathology 67 (2), 399-410, 2018 | 13 | 2018 |
Markov logic sets: Towards lifted information retrieval using pagerank and label propagation M Neumann, B Ahmadi, K Kersting Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011 | 13 | 2011 |
Graph kernels for object category prediction in task-dependent robot grasping M Neumann, P Moreno, L Antanas, R Garnett, K Kersting Online Proceedings of the Eleventh Workshop on Mining and Learning with …, 2013 | 10 | 2013 |
Propagation kernels for partially labeled graphs M Neumann, R Garnett, P Moreno, N Patricia, K Kersting ICML–2012 Workshop on Mining and Learning with Graphs (MLG–2012), Edinburgh, UK, 2012 | 9 | 2012 |
Markov logic mixtures of Gaussian processes: Towards machines reading regression data M Schiegg, M Neumann, K Kersting Artificial Intelligence and Statistics, 1002-1011, 2012 | 8 | 2012 |
A unifying view of explicit and implicit feature maps for structured data: systematic studies of graph kernels NM Kriege, M Neumann, C Morris, K Kersting, P Mutzel arXiv preprint arXiv:1703.00676, 2017 | 6 | 2017 |
High-level reasoning and low-level learning for grasping: A probabilistic logic pipeline L Antanas, P Moreno, M Neumann, RP de Figueiredo, K Kersting, ... arXiv preprint arXiv:1411.1108, 2014 | 6 | 2014 |
Coinciding walk kernels: Parallel absorbing random walks for learning with graphs and few labels M Neumann, R Garnett, K Kersting Asian conference on machine learning, 357-372, 2013 | 5 | 2013 |
SmartDDS-Plant disease setection via smartphone B Klatt, B Kleinhenz, C Kuhn, C Bauckhage, M Neumann, K Kersting, ... EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation …, 2013 | 5 | 2013 |
Semantic and geometric reasoning for robotic grasping: a probabilistic logic approach L Antanas, P Moreno, M Neumann, RP de Figueiredo, K Kersting, ... Autonomous Robots 43 (6), 1393-1418, 2019 | 2 | 2019 |
Model AI Assignments 2019 TW Neller, R Sooriamurthi, M Guerzhoy, L Zhang, P Talaga, C Archibald, ... Proceedings of the AAAI Conference on Artificial Intelligence 33, 9751-9753, 2019 | 1 | 2019 |