Valerio De Martinis
Valerio De Martinis
ETH Zuerich, Institut für Verkehrsplanung und Transportsysteme
Bestätigte E-Mail-Adresse bei ivt.baug.ethz.ch
Titel
Zitiert von
Zitiert von
Jahr
Models and methods to optimise train speed profiles with and without energy recovery systems: a suburban test case
V De Martinis, M Gallo
Procedia-Social and Behavioral Sciences 87, 222-233, 2013
402013
Human-like adaptive cruise control systems through a learning machine approach
F Simonelli, GN Bifulco, V De Martinis, V Punzo
Applications of Soft Computing, 240-249, 2009
342009
Data-driven perspectives for energy efficient operations in railway systems: Current practices and future opportunities
V De Martinis, F Corman
Transportation Research Part C: Emerging Technologies 95, 679-697, 2018
222018
Definition of energy-efficient speed profiles within rail traffic by means of supply design models
V De Martinis, UA Weidmann
Research in Transportation Economics 54, 41-50, 2015
212015
Estimating the effects of energy-efficient driving profiles on railway consumption
M Gallo, F Simonelli, G De Luca, V De Martinis
2015 IEEE 15th International Conference on Environment and Electrical …, 2015
192015
Estimating the benefits of energy-efficient train driving strategies: a model calibration with real data
V De Martinisl, M Gallo, L D’Acierno
Urban Transport XIX 130, 201, 2013
192013
Towards a simulation-based framework for evaluating energy-efficient solutions in train operation
V De Martinis, U Weidmann, M Gallo
Computers in Railways XIV 135, 721-732, 2014
182014
What about train length and energy efficiency of freight trains in rescheduling models?
A Toletti, V De Martinis, U Weidmann
Transportation Research Procedia 10, 584-594, 2015
162015
A simulation-based approach for evaluating train operating costs under different signalling systems
G Corapi, D Sanzari, V De Martinis, L D’Acierno, B Montella
WIT Transactions on the Built Environment 130, 149-161, 2013
152013
The effects of urban traffic plans on noise abatement: a case study
M Gallo, G De Luca, V De Martinis
WIT Transactions on Ecology and the Environment 191, 583-594, 2014
102014
Impacts of energy saving strategies (ESSs) on rail services and related effects on travel demand
G Corapi, V De Martinis, A Placido, G De Luca
WIT Transactions on the Built Environment 135, 709-720, 2014
92014
Agent-based simulation approach for disruption management in rail schedule
N Leng, V De Martinis, F Corman
Conference on Advanced Systems in Public Transport and TransitData (CASPT 2018), 2018
62018
Energy savings in mixed rail traffic rescheduling: an RCG approach
A Toletti, V De Martinis, U Weidmann
2016 IEEE 19th International Conference on Intelligent Transportation …, 2016
52016
The evolution and planning of hierarchical transport networks
V De Martinis, F Pagliara, A Wilson
Environment and Planning B: Planning and Design 41 (2), 192-210, 2014
52014
Filtering approaches for online train motion estimation with onboard power measurements
PG Sessa, V De Martinis, F Corman
Computer‐Aided Civil and Infrastructure Engineering 35 (5), 415-429, 2020
32020
Feedforward tactical optimization for energy-efficient operation of freight trains: the Swiss case
V De Martinis, A Toletti, F Corman, UA Weidmann, A Nash
Transportation Research Record 2672 (10), 278-288, 2018
32018
The evaluation of energy efficient solutions in train operation: a simulation-based approach
V De Martinis, UA Weidmann
14th Swiss Transport Research Conf.(STRC 2014), Switzerland, 2014
32014
The evolution of hierarchical transport networks: a demonstration model
F Pagliara, A Wilson, V de Martinis
CASA WP 169, 2011
32011
Online microscopic calibration of train motion models: towards the era of customized control solutions
V De Martinis, F Corman
RailNorrköping 2019. 8th International Conference on Railway Operations …, 2019
12019
A hybrid dynamic-kinematic EKF for train trajectory estimation
PG Sessa, V De Martinis, F Corman
2018 21st International Conference on Intelligent Transportation Systems …, 2018
12018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20