Marco Mancini
Marco Mancini
Research assistant for CFD, Clausthal University of technology
Bestätigte E-Mail-Adresse bei
TitelZitiert vonJahr
Mathematical modeling of MILD combustion of pulverized coal
N Schaffel, M Mancini, A Szle, R Weber
Combustion and Flame 156 (9), 1771-1784, 2009
Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel
T Kupka, M Mancini, M Irmer, R Weber
Fuel 87 (12), 2824-2837, 2008
Predicting NOx emissions of a burner operated in flameless oxidation mode
M Mancini, R Weber, U Bollettini
Proceedings of the combustion institute 29 (1), 1155-1163, 2002
On mathematical modelling of flameless combustion
M Mancini, P Schwöppe, R Weber, S Orsino
Combustion and flame 150 (1-2), 54-59, 2007
On predicting the ash behaviour using Computational Fluid Dynamics
R Weber, M Mancini, N Schaffel-Mancini, T Kupka
Fuel Processing Technology 105, 113-128, 2013
Gasification of high viscous slurry R&D on atomization and numerical simulation
T Jakobs, N Djordjevic, S Fleck, M Mancini, R Weber, T Kolb
Applied energy 93, 449-456, 2012
Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion (HTAC) technology
N Schaffel-Mancini, M Mancini, A Szlek, R Weber
Energy 35 (7), 2752-2760, 2010
Fly ash deposition modelling: Requirements for accurate predictions of particle impaction on tubes using RANS-based computational fluid dynamics
R Weber, N Schaffel-Mancini, M Mancini, T Kupka
Fuel 108, 586-596, 2013
Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450–7600 cm− 1 spectral range
M Alberti, R Weber, M Mancini, A Fateev, S Clausen
Journal of Quantitative Spectroscopy and Radiative Transfer 157, 14-33, 2015
Measurements and CFD modeling of a pulverized coal flame with emphasis on ash deposition
AM Beckmann, M Mancini, R Weber, S Seebold, M Müller
Fuel 167, 168-179, 2016
Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures
JM Johansen, R Gadsbøll, J Thomsen, PA Jensen, P Glarborg, P Ek, ...
Applied energy 162, 245-256, 2016
Re-creating Hottel’s emissivity charts for carbon dioxide and extending them to 40bar pressure using HITEMP-2010 data base
M Alberti, R Weber, M Mancini
Combustion and Flame 162 (3), 597-612, 2015
Comparison of models for predicting band emissivity of carbon dioxide and water vapour at high temperatures
M Alberti, R Weber, M Mancini, MF Modest
International Journal of Heat and Mass Transfer 64, 910-925, 2013
A char combustion sub-model for CFD-predictions of fluidized bed combustion-experiments and mathematical modeling
J Bibrzycki, M Mancini, A Szlęk, R Weber
Combustion and Flame 163, 188-201, 2016
Analysis of mild combustion of Natural gas with preheated air
M Mancini
Papierflieger, 2007
Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass
JM Johansen, PA Jensen, P Glarborg, M Mancini, R Weber, RE Mitchell
Energy 95, 279-290, 2016
Non-isothermal CFD model of the HEC burner and furnace
RH Hekkens, M Mancini
Topical report G 108, 2004
HADES code for numerical simulations of high-mach number astrophysical radiative flows
C Michaut, L Di Menza, HC Nguyen, SE Bouquet, M Mancini
High Energy Density Physics 22, 77-89, 2017
Mathematical models development for design of HTAC systems
M Mancini, R Weber, U Bollettini
4th Symposium on High Temperature Air Combustion and Gasification, Rome, 2001
Numerical Computation of NOx Formation in Mild Combustion of Natural Gas
M Mancini, P Schwöppe, R Weber
Proceedings of the Computational Combustion 2007, ECCOMAS Thematic Conference, 2007
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20