Marco Mancini
Marco Mancini
Research assistant for CFD, Clausthal University of technology
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Mathematical modeling of MILD combustion of pulverized coal
N Schaffel, M Mancini, A Szle, R Weber
Combustion and Flame 156 (9), 1771-1784, 2009
Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel
T Kupka, M Mancini, M Irmer, R Weber
Fuel 87 (12), 2824-2837, 2008
Predicting NOx emissions of a burner operated in flameless oxidation mode
M Mancini, R Weber, U Bollettini
Proceedings of the combustion institute 29 (1), 1155-1163, 2002
On mathematical modelling of flameless combustion
M Mancini, P Schwöppe, R Weber, S Orsino
Combustion and flame 150 (1-2), 54-59, 2007
On predicting the ash behaviour using Computational Fluid Dynamics
R Weber, M Mancini, N Schaffel-Mancini, T Kupka
Fuel Processing Technology 105, 113-128, 2013
Gasification of high viscous slurry R&D on atomization and numerical simulation
T Jakobs, N Djordjevic, S Fleck, M Mancini, R Weber, T Kolb
Applied energy 93, 449-456, 2012
Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion (HTAC) technology
N Schaffel-Mancini, M Mancini, A Szlek, R Weber
Energy 35 (7), 2752-2760, 2010
Fly ash deposition modelling: Requirements for accurate predictions of particle impaction on tubes using RANS-based computational fluid dynamics
R Weber, N Schaffel-Mancini, M Mancini, T Kupka
Fuel 108, 586-596, 2013
Measurements and CFD modeling of a pulverized coal flame with emphasis on ash deposition
AM Beckmann, M Mancini, R Weber, S Seebold, M Müller
Fuel 167, 168-179, 2016
Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450–7600 cm− 1 spectral range
M Alberti, R Weber, M Mancini, A Fateev, S Clausen
Journal of Quantitative Spectroscopy and Radiative Transfer 157, 14-33, 2015
Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures
JM Johansen, R Gadsbøll, J Thomsen, PA Jensen, P Glarborg, P Ek, ...
Applied energy 162, 245-256, 2016
Entrained flow gasification Part 1: Gasification of glycol in an atmospheric-pressure experimental rig
S Fleck, U Santo, C Hotz, T Jakobs, G Eckel, M Mancini, R Weber, T Kolb
Fuel 217, 306-319, 2018
Re-creating Hottel’s emissivity charts for carbon dioxide and extending them to 40bar pressure using HITEMP-2010 data base
M Alberti, R Weber, M Mancini
Combustion and Flame 162 (3), 597-612, 2015
Mathematical modeling of reactants’ transport and chemistry during oxidation of a millimeter-sized coal-char particle in a hot air stream
AM Beckmann, J Bibrzycki, M Mancini, A Szlęk, R Weber
Combustion and Flame 180, 2-9, 2017
Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass
JM Johansen, PA Jensen, P Glarborg, M Mancini, R Weber, RE Mitchell
Energy 95, 279-290, 2016
Re-creating Hottel’s emissivity charts for water vapor and extending them to 40 bar pressure using HITEMP-2010 data base
M Alberti, R Weber, M Mancini
Combustion and flame 169, 141-153, 2016
On scaling and mathematical modelling of large scale industrial flames
R Weber, M Mancini
Journal of the Energy Institute 93 (1), 43-51, 2020
Entrained flow gasification. Part 2: Mathematical modeling of the gasifier using RANS method
M Mancini, M Alberti, M Dammann, U Santo, G Eckel, T Kolb, R Weber
Fuel 225, 596-611, 2018
A char combustion sub-model for CFD-predictions of fluidized bed combustion-experiments and mathematical modeling
J Bibrzycki, M Mancini, A Szlęk, R Weber
Combustion and Flame 163, 188-201, 2016
Entrained flow gasification. Part 3: Insight into the injector near-field by Large Eddy Simulation with detailed chemistry
G Eckel, P Le Clercq, T Kathrotia, A Saenger, S Fleck, M Mancini, T Kolb, ...
Fuel 223, 164-178, 2018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20