Deep variational reinforcement learning for POMDPs M Igl, L Zintgraf, TA Le, F Wood, S Whiteson International Conference on Machine Learning, 2117-2126, 2018 | 169 | 2018 |
Tighter variational bounds are not necessarily better T Rainforth, A Kosiorek, TA Le, C Maddison, M Igl, F Wood, YW Teh International Conference on Machine Learning, 4277-4285, 2018 | 157 | 2018 |
Auto-encoding sequential monte carlo TA Le, M Igl, T Rainforth, T Jin, F Wood arXiv preprint arXiv:1705.10306, 2017 | 130 | 2017 |
Treeqn and atreec: Differentiable tree-structured models for deep reinforcement learning G Farquhar, T Rocktäschel, M Igl, S Whiteson arXiv preprint arXiv:1710.11417, 2017 | 109 | 2017 |
Varibad: A very good method for bayes-adaptive deep rl via meta-learning L Zintgraf, K Shiarlis, M Igl, S Schulze, Y Gal, K Hofmann, S Whiteson arXiv preprint arXiv:1910.08348, 2019 | 93 | 2019 |
Generalization in reinforcement learning with selective noise injection and information bottleneck M Igl, K Ciosek, Y Li, S Tschiatschek, C Zhang, S Devlin, K Hofmann Advances in neural information processing systems 32, 2019 | 70 | 2019 |
The impact of non-stationarity on generalisation in deep reinforcement learning M Igl, G Farquhar, J Luketina, W Boehmer, S Whiteson arXiv preprint arXiv:2006.05826, 2020 | 17 | 2020 |
Transient non-stationarity and generalisation in deep reinforcement learning M Igl, G Farquhar, J Luketina, W Boehmer, S Whiteson arXiv preprint arXiv:2006.05826, 2020 | 14 | 2020 |
Multitask soft option learning M Igl, A Gambardella, J He, N Nardelli, N Siddharth, W Böhmer, ... Conference on Uncertainty in Artificial Intelligence, 969-978, 2020 | 13 | 2020 |
My body is a cage: the role of morphology in graph-based incompatible control V Kurin, M Igl, T Rocktäschel, W Boehmer, S Whiteson arXiv preprint arXiv:2010.01856, 2020 | 12 | 2020 |
Variational task embeddings for fast adapta-tion in deep reinforcement learning L Zintgraf, M Igl, K Shiarlis, A Mahajan, K Hofmann, S Whiteson International Conference on Learning Representations Workshop (ICLRW), 2019 | 6 | 2019 |
Exploration in approximate hyper-state space for meta reinforcement learning LM Zintgraf, L Feng, C Lu, M Igl, K Hartikainen, K Hofmann, S Whiteson International Conference on Machine Learning, 12991-13001, 2021 | 5 | 2021 |
Communicating via Markov Decision Processes S Sokota, CS de Witt, M Igl, LM Zintgraf, P Torr, JZ Kolter, S Whiteson, ... | 1 | 2021 |
VariBAD: Variational Bayes-Adaptive Deep RL via Meta-Learning L Zintgraf, S Schulze, C Lu, L Feng, M Igl, K Shiarlis, Y Gal, K Hofmann, ... Journal of Machine Learning Research 22 (289), 1-39, 2021 | 1 | 2021 |
Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation M Igl, D Kim, A Kuefler, P Mougin, P Shah, K Shiarlis, D Anguelov, ... arXiv preprint arXiv:2205.03195, 2022 | | 2022 |
Snowflake: Scaling GNNs to high-dimensional continuous control via parameter freezing C Blake, V Kurin, M Igl, S Whiteson Advances in Neural Information Processing Systems 34, 2021 | | 2021 |
Implicit Communication as Minimum Entropy Coupling S Sokota, CS de Witt, M Igl, L Zintgraf, P Torr, S Whiteson, J Foerster arXiv preprint arXiv:2107.08295, 2021 | | 2021 |
Inductive biases and generalisation for deep reinforcement learning M Igl University of Oxford, 2021 | | 2021 |
Generalization in Reinforcement Learning with Selective Noise Injection and Information M Igl, K Ciosek, Y Li, S Tschiatschek, C Zhang, S Devlin, K Hofmann | | 2019 |
Inference and Distillation for Option Learning M Igl, W Boehmer, A Gambardella, PHS Torr, N Nardelli, N Siddharth, ... Workshop on Probabilistic Reinforcement Learning and Structured Control …, 2018 | | 2018 |