Tighter variational bounds are not necessarily better T Rainforth, A Kosiorek, TA Le, C Maddison, M Igl, F Wood, YW Teh International Conference on Machine Learning, 4277-4285, 2018 | 115 | 2018 |
Deep variational reinforcement learning for POMDPs M Igl, L Zintgraf, TA Le, F Wood, S Whiteson International Conference on Machine Learning, 2117-2126, 2018 | 99 | 2018 |
Auto-encoding sequential monte carlo TA Le, M Igl, T Rainforth, T Jin, F Wood arXiv preprint arXiv:1705.10306, 2017 | 98 | 2017 |
Treeqn and atreec: Differentiable tree-structured models for deep reinforcement learning G Farquhar, T Rocktäschel, M Igl, S Whiteson arXiv preprint arXiv:1710.11417, 2017 | 77 | 2017 |
Varibad: A very good method for bayes-adaptive deep rl via meta-learning L Zintgraf, K Shiarlis, M Igl, S Schulze, Y Gal, K Hofmann, S Whiteson arXiv preprint arXiv:1910.08348, 2019 | 34 | 2019 |
Generalization in reinforcement learning with selective noise injection and information bottleneck M Igl, K Ciosek, Y Li, S Tschiatschek, C Zhang, S Devlin, K Hofmann arXiv preprint arXiv:1910.12911, 2019 | 21 | 2019 |
Multitask soft option learning M Igl, A Gambardella, J He, N Nardelli, N Siddharth, W Böhmer, ... Conference on Uncertainty in Artificial Intelligence, 969-978, 2020 | 6 | 2020 |
Variational task embeddings for fast adapta-tion in deep reinforcement learning L Zintgraf, M Igl, K Shiarlis, A Mahajan, K Hofmann, S Whiteson International Conference on Learning Representations Workshop (ICLRW), 2019 | 5 | 2019 |
The impact of non-stationarity on generalisation in deep reinforcement learning M Igl, G Farquhar, J Luketina, W Boehmer, S Whiteson arXiv preprint arXiv:2006.05826, 2020 | 4 | 2020 |
Varibad: a very good method for bayes-adaptive deep rl via meta-learning S Schulze, S Whiteson, L Zintgraf, M Igl, Y Gal, K Shiarlis, K Hofmann International Conference on Learning Representations, 2020 | 3 | 2020 |
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control V Kurin, M Igl, T Rocktäschel, W Boehmer, S Whiteson arXiv preprint arXiv:2010.01856, 2020 | 1 | 2020 |
Exploration in Approximate Hyper-State Space for Meta Reinforcement Learning L Zintgraf, L Feng, M Igl, K Hartikainen, K Hofmann, S Whiteson arXiv preprint arXiv:2010.01062, 2020 | | 2020 |
Generalization in Reinforcement Learning with Selective Noise Injection and Information M Igl, K Ciosek, Y Li, S Tschiatschek, C Zhang, S Devlin, K Hofmann | | 2019 |
Composition of queries in probabilistic programming languages M Igl | | 2016 |
Soft Option Transfer J He, M Igl, M Smith, W Boehmer, S Whiteson | | |