Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs T Gräfnitz Journal of Algebraic Geometry 31 (4), 687-749, 2022 | 36* | 2022 |
The proper Landau-Ginzburg potential is the open mirror map T Gräfnitz, H Ruddat, E Zaslow Advances in Mathematics 447, 109639, 2024 | 20 | 2024 |
Theta functions, broken lines and 2-marked log Gromov-Witten invariants T Gräfnitz arXiv preprint arXiv:2204.12257, 2022 | 9 | 2022 |
Enumerative geometry of quantum periods T Gräfnitz, H Ruddat, E Zaslow, B Zhou arXiv preprint arXiv:2502.19408, 2025 | 4* | 2025 |
The dense region in scattering diagrams T Gräfnitz, P Luo Bulletin of the Australian Mathematical Society, 1-13, 2025 | 2* | 2025 |
Gromov-Witten Invariants and Mirror Symmetry For Non-Fano Varieties Via Tropical Disks P Berglund, T Gräfnitz, M Lathwood arXiv preprint arXiv:2404.16782, 2024 | 1* | 2024 |
Counting (tropical) curves via scattering. sage T Gräfnitz arXiv preprint arXiv:2210.10455, 2022 | 1 | 2022 |
Singular Log Structures and Log Crepant Log Resolutions I A Corti, T Graefnitz, H Ruddat arXiv preprint arXiv:2503.11610, 2025 | | 2025 |
Smoothings from zero mutable Laurent polynomials via log resolutions and divisorial extractions T Gräfnitz preprint available on timgraefnitz.com, 2025 | | 2025 |
Relations between 2-marked log Gromov-Witten invariants and the tropical evaluation curve T Gräfnitz in preparation, 0 | | |