The emotionality of sonic events: testing the geneva emotional music scale (GEMS) for popular and electroacoustic music A Lykartsis, A Pysiewicz, H von Coler, S Lepa The 3rd International Conference on Music & Emotion, Jyväskylä, Finland …, 2013 | 29 | 2013 |
Beat Histogram Features for Rhythm-Based Musical Genre Classification Using Multiple Novelty Functions A Lykartsis, A Lerch Proceedings of the 18th International Conference on Digital Audio Effects …, 2015 | 28* | 2015 |
Using the Beat Histogram for Speech Rhythm Description and Language Identification A Lykartsis, S Weinzierl Proceedings of the Sixteenth Annual Interspeech Conference of the …, 2015 | 12 | 2015 |
Beat Histogram Features from NMF-Based Novelty Functions for Music Classification A Lykartsis, CW Wu, A Lerch Proceedings of the 16th International Society for Music Information …, 2015 | 8 | 2015 |
Prediction of dialogue success with spectral and rhythm acoustic features using dnns and svms A Lykartsis, M Kotti, A Papangelis, Y Stylianou 2018 IEEE Spoken Language Technology Workshop (SLT), 838-845, 2018 | 5 | 2018 |
Speaker identification for swiss german with spectral and rhythm features A Lykartsis, S Weinzierl, V Dellwo Audio Engineering Society Conference: 2017 AES International Conference on …, 2017 | 5 | 2017 |
Speech and Music Discrimination: Human Detection of Differences between Music and Speech based on Rhythm M Stanev, J Redlich, C Knörzer, N Rosenfeld, A Lykartsis Proceedings of the 2016 Speech Prosody Conference, 2016 | 4* | 2016 |
Evaluation of accent-based rhythmic descriptors for genre classification of musical signals A Lykartsis Master’s thesis, Audio Communication Group, Technische Universität Berlin …, 2014 | 4 | 2014 |
Musical dynamics classification with cnn and modulation spectra L Marinelli, A Lykartsis, S Weinzierl, C Saitis Proceedings of the 17th Sound and Music Computing Conference, Torino, Italy …, 2020 | 3 | 2020 |
Acoustic identification of flat spots on wheels using different machine learning techniques G Dernbach, A Lykartsis, L Sievers, S Weinzierl Technische Universität Berlin, 2020 | 3 | 2020 |
Prediction of user emotion and dialogue success using audio spectrograms and convolutional neural networks A Lykartsis, M Kotti Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue …, 2019 | 3 | 2019 |
Rhythm description for music and speech using the beat histogram with multiple novelty functions: First results A Lykartsis, S Weinzierl Technische Universität Berlin, 2019 | 3 | 2019 |
Analysis of Speech Rhythm for Language Identification Based on Beat Histograms A Lykartsis, A Lerch, S Weinzierl Fortschritte der Akustik: Tagungsband d. 41. DAGA, Nürnberg, Germany, 2015 | 3* | 2015 |
A prototype deep learning system for the acoustic monitoring of intensive care patients A Lykartsis, M Hädrich, S Weinzierl 2021 29th European Signal Processing Conference (EUSIPCO), 980-984, 2021 | 2 | 2021 |
On the analysis of speech rhythm for language and speaker identification A Lykartsis Technische Universität Berlin, 2020 | 2 | 2020 |
Eigen-images of head-related transfer functions C Hold, F Seipel, F Brinkmann, A Lykartsis, S Weinzierl Audio Engineering Society Convention 143, 2017 | 2 | 2017 |
Eine qualitative Untersuchung der Generalisierungsverhaltens von CNNs zur Instrumentenerkennung RB Gebhardt, A Lykartsis, S Weinzierl Technische Universität Berlin, 2020 | | 2020 |
Music Mood Classification using Convolutional Neural Networks J Stoltenberg, DL Tran, S Zoller, A Lykartsis, R Gebhardt, C Saitis, ... | | 2019 |
A Confidence Measure For Key Labelling. RB Gebhardt, M Stein, A Lykartsis ISMIR, 3-9, 2018 | | 2018 |
Acoustic Identification of Flat Spots On Wheels Using Different Machine Learning Techniques Gabriel Dernbach1, Athanasios Lykartsis1, Leon Sievers2, Stefan Weinzierl1 G Dernbach, A Lykartsis, L Sievers, S Weinzierl | | |