Self-attentional acoustic models M Sperber, J Niehues, G Neubig, S Stüker, A Waibel arXiv preprint arXiv:1803.09519, 2018 | 191 | 2018 |
Attention-passing models for robust and data-efficient end-to-end speech translation M Sperber, G Neubig, J Niehues, A Waibel Transactions of the Association for Computational Linguistics 7, 313-325, 2019 | 116 | 2019 |
Findings of the IWSLT 2022 Evaluation Campaign. A Anastasopoulos, L Barrault, L Bentivogli, MZ Boito, O Bojar, R Cattoni, ... Proceedings of the 19th International Conference on Spoken Language …, 2022 | 105 | 2022 |
Speech translation and the end-to-end promise: Taking stock of where we are M Sperber, M Paulik arXiv preprint arXiv:2004.06358, 2020 | 100 | 2020 |
Neural lattice-to-sequence models for uncertain inputs M Sperber, G Neubig, J Niehues, A Waibel arXiv preprint arXiv:1704.00559, 2017 | 90 | 2017 |
Toward robust neural machine translation for noisy input sequences M Sperber, J Niehues, A Waibel Proceedings of the 14th International Conference on Spoken Language …, 2017 | 82 | 2017 |
XNMT: The extensible neural machine translation toolkit G Neubig, M Sperber, X Wang, M Felix, A Matthews, S Padmanabhan, ... arXiv preprint arXiv:1803.00188, 2018 | 76 | 2018 |
Low-latency neural speech translation J Niehues, NQ Pham, TL Ha, M Sperber, A Waibel arXiv preprint arXiv:1808.00491, 2018 | 72 | 2018 |
Comparison of decoding strategies for ctc acoustic models T Zenkel, R Sanabria, F Metze, J Niehues, M Sperber, S Stüker, A Waibel arXiv preprint arXiv:1708.04469, 2017 | 57 | 2017 |
Self-attentional models for lattice inputs M Sperber, G Neubig, NQ Pham, A Waibel arXiv preprint arXiv:1906.01617, 2019 | 47 | 2019 |
JAguc—a software package for environmental diversity analyses ME Nebel, S Wild, M Holzhauser, L Huettenberger, R Reitzig, M Sperber, ... Journal of Bioinformatics and Computational Biology 9 (06), 749-773, 2011 | 47 | 2011 |
Findings of the iwslt 2023 evaluation campaign M Agarwal, S Agarwal, A Anastasopoulos, L Bentivogli, O Bojar, C Borg, ... Association for Computational Linguistics, 2023 | 38 | 2023 |
Fluent translations from disfluent speech in end-to-end speech translation E Salesky, M Sperber, A Waibel arXiv preprint arXiv:1906.00556, 2019 | 38 | 2019 |
Exploring phoneme-level speech representations for end-to-end speech translation E Salesky, M Sperber, AW Black arXiv preprint arXiv:1906.01199, 2019 | 37 | 2019 |
Efficient Transcription Through Respeaking M Sperber, G Neubig, C Fügen, S Nakamura, A Waibel Interspeech, 2013 | 33 | 2013 |
Dynamic Transcription for Low-Latency Speech Translation. J Niehues, TS Nguyen, E Cho, TL Ha, K Kilgour, M Müller, M Sperber, ... Interspeech, 2513-2517, 2016 | 26 | 2016 |
End-to-end speech translation for code switched speech O Weller, M Sperber, T Pires, H Setiawan, C Gollan, D Telaar, M Paulik arXiv preprint arXiv:2204.05076, 2022 | 24 | 2022 |
Paraphrases as foreign languages in multilingual neural machine translation Z Zhou, M Sperber, A Waibel arXiv preprint arXiv:1808.08438, 2018 | 24 | 2018 |
Transcribing against time M Sperber, G Neubig, J Niehues, S Nakamura, A Waibel Speech communication 93, 20-30, 2017 | 20 | 2017 |
Consistent transcription and translation of speech M Sperber, H Setiawan, C Gollan, U Nallasamy, M Paulik Transactions of the Association for Computational Linguistics 8, 695-709, 2020 | 18 | 2020 |