Folgen
Manish Shrivastava
Titel
Zitiert von
Zitiert von
Jahr
A dataset of Hindi-English code-mixed social media text for hate speech detection
A Bohra, D Vijay, V Singh, SS Akhtar, M Shrivastava
Proceedings of the second workshop on computational modeling of people’s …, 2018
1622018
Towards sub-word level compositions for sentiment analysis of hindi-english code mixed text
A Joshi, A Prabhu, M Shrivastava, V Varma
Proceedings of COLING 2016, the 26th International Conference on …, 2016
1182016
Morphological richness offsets resource poverty-an experience in building a pos tagger for hindi
S Singh, K Gupta, M Shrivastava, P Bhattacharyya
Proceedings of the COLING/ACL, Sydney, Australia, 2006
104*2006
Together we stand: Siamese networks for similar question retrieval
A Das, H Yenala, M Chinnakotla, M Shrivastava
Proceedings of the 54th Annual Meeting of the Association for Computational …, 2016
1032016
Hindi POS tagger using naive stemming: harnessing morphological information without extensive linguistic knowledge
M Shrivastava, P Bhattacharyya
International Conference on NLP (ICON08), Pune, India, 2008
892008
Shallow Parsing Pipeline for Hindi-English Code-Mixed Social Media Text
A Sharma, S Gupta, R Motlani, P Bansal, M Srivastava, R Mamidi, ...
NAACl-HLT, 2016
872016
Iiit-h system submission for fire2014 shared task on transliterated search
IA Bhat, V Mujadia, A Tammewar, RA Bhat, M Shrivastava
Proceedings of the Forum for Information Retrieval Evaluation, 48-53, 2014
772014
Fermi at semeval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in twitter
V Indurthi, B Syed, M Shrivastava, N Chakravartula, M Gupta, V Varma
Proceedings of the 13th international workshop on semantic evaluation, 70-74, 2019
712019
" Answer ka type kya he?" Learning to Classify Questions in Code-Mixed Language
KC Raghavi, MK Chinnakotla, M Shrivastava
Proceedings of the 24th International Conference on World Wide Web, 853-858, 2015
672015
Universal Dependency parsing for Hindi-English code-switching
IA Bhat, RA Bhat, M Shrivastava, DM Sharma
North American Chapter of the Association for Computational Linguistics …, 2018
572018
Towards deep learning in hindi ner: An approach to tackle the labelled data scarcity
V Athavale, S Bharadwaj, M Pamecha, A Prabhu, M Shrivastava
arXiv preprint arXiv:1610.09756, 2016
572016
Named entity recognition for hindi-english code-mixed social media text
V Singh, D Vijay, SS Akhtar, M Shrivastava
Proceedings of the seventh named entities workshop, 27-35, 2018
522018
Degree based classification of harmful speech using twitter data
S Sharma, S Agrawal, M Shrivastava
arXiv preprint arXiv:1806.04197, 2018
492018
De-mixing sentiment from code-mixed text
YK Lal, V Kumar, M Dhar, M Shrivastava, P Koehn
Proceedings of the 57th annual meeting of the association for computational …, 2019
462019
Enabling code-mixed translation: Parallel corpus creation and mt augmentation approach
M Dhar, V Kumar, M Shrivastava
Proceedings of the First Workshop on Linguistic Resources for Natural …, 2018
422018
High‐speed quantile‐based histogram equalisation for brightness preservation and contrast enhancement
M Tiwari, B Gupta, M Shrivastava
IET Image Processing 9 (1), 80-89, 2015
412015
A corpus of english-hindi code-mixed tweets for sarcasm detection
S Swami, A Khandelwal, V Singh, SS Akhtar, M Shrivastava
arXiv preprint arXiv:1805.11869, 2018
392018
Corpus creation and emotion prediction for Hindi-English code-mixed social media text
D Vijay, A Bohra, V Singh, SS Akhtar, M Shrivastava
Proceedings of the 2018 conference of the North American chapter of the …, 2018
372018
Towards sub-word level compositions for sentiment analysis of hindi-english code mixed text
A Prabhu, A Joshi, M Shrivastava, V Varma
arXiv preprint arXiv:1611.00472, 2016
352016
Aggression detection on social media text using deep neural networks
V Singh, A Varshney, SS Akhtar, D Vijay, M Shrivastava
Proceedings of the 2nd workshop on abusive language online (ALW2), 43-50, 2018
342018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20