Follow
Jan Gasthaus
Jan Gasthaus
AWS AI Labs, Amazon Web Services
Verified email at ucl.ac.uk - Homepage
Title
Cited by
Cited by
Year
DeepAR: Probabilistic forecasting with autoregressive recurrent networks
D Salinas, V Flunkert, J Gasthaus, T Januschowski
International Journal of Forecasting 36 (3), 1181-1191, 2020
11762020
Deep state space models for time series forecasting
SS Rangapuram, MW Seeger, J Gasthaus, L Stella, Y Wang, ...
Advances in neural information processing systems 31, 2018
5162018
Deep factors for forecasting
Y Wang, A Smola, D Maddix, J Gasthaus, D Foster, T Januschowski
International conference on machine learning, 6607-6617, 2019
1452019
Criteria for classifying forecasting methods
T Januschowski, J Gasthaus, Y Wang, D Salinas, V Flunkert, ...
International Journal of Forecasting 36 (1), 167-177, 2020
1392020
A stochastic memoizer for sequence data
F Wood, C Archambeau, J Gasthaus, L James, YW Teh
Proceedings of the 26th annual international conference on machine learning …, 2009
1332009
Gluonts: Probabilistic and neural time series modeling in python
A Alexandrov, K Benidis, M Bohlke-Schneider, V Flunkert, J Gasthaus, ...
The Journal of Machine Learning Research 21 (1), 4629-4634, 2020
1322020
High-dimensional multivariate forecasting with low-rank gaussian copula processes
D Salinas, M Bohlke-Schneider, L Callot, R Medico, J Gasthaus
Advances in neural information processing systems 32, 2019
1292019
Probabilistic forecasting with spline quantile function RNNs
J Gasthaus, K Benidis, Y Wang, SS Rangapuram, D Salinas, V Flunkert, ...
The 22nd international conference on artificial intelligence and statistics …, 2019
1222019
Probabilistic demand forecasting at scale
JH Böse, V Flunkert, J Gasthaus, T Januschowski, D Lange, D Salinas, ...
Proceedings of the VLDB Endowment 10 (12), 1694-1705, 2017
1192017
Neural forecasting: Introduction and literature overview
K Benidis, SS Rangapuram, V Flunkert, B Wang, D Maddix, C Turkmen, ...
arXiv preprint arXiv:2004.10240 6, 2020
1082020
Elastic machine learning algorithms in amazon sagemaker
E Liberty, Z Karnin, B Xiang, L Rouesnel, B Coskun, R Nallapati, ...
Proceedings of the 2020 ACM SIGMOD International Conference on Management of …, 2020
952020
The sequence memoizer
F Wood, J Gasthaus, C Archambeau, L James, YW Teh
Communications of the ACM 54 (2), 91-98, 2011
872011
Gluonts: Probabilistic time series models in python
A Alexandrov, K Benidis, M Bohlke-Schneider, V Flunkert, J Gasthaus, ...
arXiv preprint arXiv:1906.05264, 2019
752019
Forecasting big time series: old and new
C Faloutsos, J Gasthaus, T Januschowski, Y Wang
Proceedings of the VLDB Endowment 11 (12), 2102-2105, 2018
612018
Dependent Dirichlet process spike sorting
J Gasthaus, F Wood, D Gorur, Y Teh
Advances in neural information processing systems 21, 2008
512008
End-to-end learning of coherent probabilistic forecasts for hierarchical time series
SS Rangapuram, LD Werner, K Benidis, P Mercado, J Gasthaus, ...
International Conference on Machine Learning, 8832-8843, 2021
412021
Lossless compression based on the Sequence Memoizer
J Gasthaus, F Wood, YW Teh
2010 data compression conference, 337-345, 2010
392010
Forecasting with trees
T Januschowski, Y Wang, K Torkkola, T Erkkilä, H Hasson, J Gasthaus
International Journal of Forecasting 38 (4), 1473-1481, 2022
362022
Deep rao-blackwellised particle filters for time series forecasting
R Kurle, SS Rangapuram, E de Bézenac, S Günnemann, J Gasthaus
Advances in Neural Information Processing Systems 33, 15371-15382, 2020
312020
Improvements to the sequence memoizer
J Gasthaus, Y Teh
Advances in Neural Information Processing Systems 23, 2010
302010
The system can't perform the operation now. Try again later.
Articles 1–20