Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1 DJ Klionsky, AK Abdel-Aziz, S Abdelfatah, M Abdellatif, A Abdoli, S Abel, ... autophagy 17 (1), 1-382, 2021 | 11120 | 2021 |
The extended PP1 toolkit: designed to create specificity M Bollen, W Peti, MJ Ragusa, M Beullens Trends in biochemical sciences 35 (8), 450-458, 2010 | 618 | 2010 |
Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo H Li, JC Radford, MJ Ragusa, KL Shea, SR McKercher, JD Zaremba, ... Proceedings of the National Academy of Sciences 105 (27), 9397-9402, 2008 | 303 | 2008 |
Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis MJ Ragusa, RE Stanley, JH Hurley Cell 151 (7), 1501-1512, 2012 | 269 | 2012 |
Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites MJ Ragusa, B Dancheck, DA Critton, AC Nairn, R Page, W Peti Nature structural & molecular biology 17 (4), 459-464, 2010 | 212 | 2010 |
Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy S Baskaran, MJ Ragusa, E Boura, JH Hurley Molecular cell 47 (3), 339-348, 2012 | 208 | 2012 |
A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy CC Jao, MJ Ragusa, RE Stanley, JH Hurley Proceedings of the National Academy of Sciences 110 (14), 5486-5491, 2013 | 153 | 2013 |
Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators JA Marsh, B Dancheck, MJ Ragusa, M Allaire, JD Forman-Kay, W Peti Structure 18 (9), 1094-1103, 2010 | 126 | 2010 |
Generation of conditional Mef2cloxP/loxP mice for temporal‐ and tissue‐specific analyses LH Vong, MJ Ragusa, JJ Schwarz genesis 43 (1), 43-48, 2005 | 94 | 2005 |
The beginning of the end: how scaffolds nucleate autophagosome biogenesis RE Stanley, MJ Ragusa, JH Hurley Trends in cell biology 24 (1), 73-81, 2014 | 86 | 2014 |
Assembly and dynamics of the autophagy-initiating Atg1 complex G Stjepanovic, CW Davies, RE Stanley, MJ Ragusa, DJ Kim, JH Hurley Proceedings of the National Academy of Sciences 111 (35), 12793-12798, 2014 | 77 | 2014 |
Molecular investigations of the structure and function of the protein phosphatase 1− spinophilin− inhibitor 2 heterotrimeric complex B Dancheck, MJ Ragusa, M Allaire, AC Nairn, R Page, W Peti Biochemistry 50 (7), 1238-1246, 2011 | 54 | 2011 |
Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction H Popelka, A Damasio, JE Hinshaw, DJ Klionsky, MJ Ragusa Proceedings of the National Academy of Sciences 114 (47), E10112-E10121, 2017 | 48 | 2017 |
Solution structure of the Atg1 complex: implications for the architecture of the phagophore assembly site J Köfinger, MJ Ragusa, IH Lee, G Hummer, JH Hurley Structure 23 (5), 809-818, 2015 | 46 | 2015 |
GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail R Sterne-Marr, PA Leahey, JE Bresee, HM Dickson, W Ho, MJ Ragusa, ... Biochemistry 48 (20), 4285-4293, 2009 | 42 | 2009 |
The IKK-binding domain of NEMO is an irregular coiled coil with a dynamic binding interface AH Barczewski, MJ Ragusa, DF Mierke, M Pellegrini Scientific Reports 9 (1), 2950, 2019 | 30 | 2019 |
A pseudo-receiver domain in Atg32 is required for mitophagy X Xia, S Katzenell, EF Reinhart, KM Bauer, M Pellegrini, MJ Ragusa Autophagy 14 (9), 1620-1628, 2018 | 26 | 2018 |
Flexibility in the PP1: spinophilin holoenzyme MJ Ragusa, M Allaire, AC Nairn, R Page, W Peti FEBS letters 585 (1), 36-40, 2011 | 26 | 2011 |
How Atg18 and the WIPIs sense phosphatidylinositol 3-phosphate S Baskaran, MJ Ragusa, JH Hurley Autophagy 8 (12), 1851-1852, 2012 | 25 | 2012 |
The carboxy terminus of yeast Atg13 binds phospholipid membrane via motifs that overlap with the Vac8-interacting domain D Gatica, A Damasio, C Pascual, DJ Klionsky, MJ Ragusa, H Popelka Autophagy 16 (6), 1007-1020, 2020 | 20 | 2020 |