Observation and control for operator semigroups M Tucsnak, G Weiss Springer Science & Business Media, 2009 | 1682 | 2009 |
Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid JA San Martín, V Starovoitov, M Tucsnak Archive for Rational Mechanics and analysis 161 (2), 113-147, 2002 | 281 | 2002 |
Stabilization of second order evolution equations by a class of unbounded feedbacks K Ammari, M Tucsnak ESAIM: Control, Optimisation and Calculus of Variations 6, 361-386, 2001 | 227 | 2001 |
Existence of solutions for the equations Modelling the motion of a rigid body in a viscous fluid C Conca, H Jorge San Martín Communications in Partial Differential Equations 25 (5-6), 99-110, 2000 | 215 | 2000 |
Stabilization of Bernoulli--Euler beams by means of a pointwise feedback force K Ammari, M Tucsnak SIAM Journal on Control and Optimization 39 (4), 1160-1181, 2000 | 163 | 2000 |
Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid T Takahashi, M Tucsnak Journal of Mathematical Fluid Mechanics 6, 53-77, 2004 | 153 | 2004 |
Well-posed systems—the LTI case and beyond M Tucsnak, G Weiss Automatica 50 (7), 1757-1779, 2014 | 136 | 2014 |
Recovering the initial state of an infinite-dimensional system using observers K Ramdani, M Tucsnak, G Weiss Automatica 46 (10), 1616-1625, 2010 | 130 | 2010 |
How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance G Weiss, M Tucsnak ESAIM: Control, Optimisation and Calculus of Variations 9, 247-273, 2003 | 126* | 2003 |
Well-posed linear systems-a survey with emphasis on conservative systems G Weiss, OJ Staffans, M Tucsnak Zielona Góra: Uniwersytet Zielonogórski, 2001 | 118 | 2001 |
A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator K Ramdani, T Takahashi, G Tenenbaum, M Tucsnak Journal of functional Analysis 226 (1), 193-229, 2005 | 110 | 2005 |
New blow-up rates for fast controls of Schrödinger and heat equations G Tenenbaum, M Tucsnak Journal of Differential Equations 243 (1), 70-100, 2007 | 104 | 2007 |
Single input controllability of a simplified fluid-structure interaction model Y Liu, T Takahashi, M Tucsnak ESAIM: Control, Optimisation and Calculus of Variations 19 (1), 20-42, 2013 | 98 | 2013 |
Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string K Ammari, A Henrot, M Tucsnak Asymptotic Analysis 28 (3-4), 215-240, 2001 | 90 | 2001 |
Uniformly exponentially stable approximations for a class of second order evolution equations: Application to LQR problems K Ramdani, T Takahashi, M Tucsnak ESAIM: Control, Optimisation and Calculus of Variations 13 (3), 503-527, 2007 | 85 | 2007 |
Boundary stabilization for the von Kármán equations JP Puel, M Tucsnak SIAM journal on control and optimization 33 (1), 255-273, 1995 | 85 | 1995 |
An initial and boundary value problem modeling of fish-like swimming JSAN MARTíN, JF Scheid, T Takahashi, M Tucsnak Archive for rational mechanics and analysis 188, 429-455, 2008 | 84 | 2008 |
How to get a conservative well-posed linear system out of thin air. Part II. Controllability and stability M Tucsnak, G Weiss SIAM journal on control and optimization 42 (3), 907-935, 2003 | 84 | 2003 |
Singular internal stabilization of the wave equation S Jaffard, M Tucsnak, E Zuazua journal of differential equations 145 (1), 184-215, 1998 | 78 | 1998 |
On the null-controllability of diffusion equations G Tenenbaum, M Tucsnak ESAIM: Control, Optimisation and Calculus of Variations 17 (4), 1088-1100, 2011 | 75 | 2011 |