Wieland Brendel
Wieland Brendel
Postdoctoral Fellow, University of Tübingen
Bestätigte E-Mail-Adresse bei uni-tuebingen.de
TitelZitiert vonJahr
Demixed principal component analysis of neural population data
D Kobak, W Brendel, C Constantinidis, CE Feierstein, A Kepecs, ...
Elife 5, e10989, 2016
Decision-based adversarial attacks: Reliable attacks against black-box machine learning models
W Brendel, J Rauber, M Bethge
arXiv preprint arXiv:1712.04248, 2017
Foolbox v0. 8.0: A python toolbox to benchmark the robustness of machine learning models
J Rauber, W Brendel, M Bethge
arXiv preprint arXiv:1707.04131 5, 2017
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
R Geirhos, P Rubisch, C Michaelis, M Bethge, FA Wichmann, W Brendel
arXiv preprint arXiv:1811.12231, 2018
Instanton constituents and fermionic zero modes in twisted CPn models
W Brendel, F Bruckmann, L Janssen, A Wipf, C Wozar
Physics Letters B 676 (1-3), 116-125, 2009
Demixed principal component analysis
W Brendel, R Romo, CK Machens
Advances in neural information processing systems, 2654-2662, 2011
Towards the first adversarially robust neural network model on MNIST
L Schott, J Rauber, M Bethge, W Brendel
arXiv preprint arXiv:1805.09190, 2018
On evaluating adversarial robustness
N Carlini, A Athalye, N Papernot, W Brendel, J Rauber, D Tsipras, ...
arXiv preprint arXiv:1902.06705, 2019
Texture synthesis using shallow convolutional networks with random filters
I Ustyuzhaninov, W Brendel, LA Gatys, M Bethge
arXiv preprint arXiv:1606.00021, 2016
Approximating cnns with bag-of-local-features models works surprisingly well on imagenet
W Brendel, M Bethge
arXiv preprint arXiv:1904.00760, 2019
Comment on" Biologically inspired protection of deep networks from adversarial attacks"
W Brendel, M Bethge
arXiv preprint arXiv:1704.01547, 2017
Adversarial vision challenge
W Brendel, J Rauber, A Kurakin, N Papernot, B Veliqi, M Salathé, ...
arXiv preprint arXiv:1808.01976, 2018
Learning to represent signals spike by spike
W Brendel, R Bourdoukan, P Vertechi, CK Machens, S Denéve
arXiv preprint arXiv:1703.03777, 2017
Unsupervised learning of an efficient short-term memory network
P Vertechi, W Brendel, CK Machens
Advances in Neural Information Processing Systems, 3653-3661, 2014
Covariant boost and structure functions of baryons in Gross-Neveu models
W Brendel, M Thies
Physical Review D 81 (8), 085002, 2010
What does it take to generate natural textures?
I Ustyuzhaninov, W Brendel, LA Gatys, M Bethge
ICLR, 2017
One-shot texture segmentation
I Ustyuzhaninov, C Michaelis, W Brendel, M Bethge
arXiv preprint arXiv:1807.02654, 2018
Biomechanical texture coding in rat whiskers
M Oladazimi, W Brendel, C Schwarz
Scientific reports 8 (1), 11139, 2018
Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
C Michaelis, B Mitzkus, R Geirhos, E Rusak, O Bringmann, AS Ecker, ...
arXiv preprint arXiv:1907.07484, 2019
Accurate, reliable and fast robustness evaluation
W Brendel, J Rauber, M Kümmerer, I Ustyuzhaninov, M Bethge
arXiv preprint arXiv:1907.01003, 2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20