Multi-dimensional concept discovery (MCD): A unifying framework with completeness guarantees J Vielhaben, S Blücher, N Strodthoff Transactions on Machine Learning Research, 2023 | 26 | 2023 |
AudioMNIST: Exploring Explainable Artificial Intelligence for audio analysis on a simple benchmark S Becker, J Vielhaben, M Ackermann, KR Müller, S Lapuschkin, W Samek Journal of the Franklin Institute 361 (1), 418-428, 2024 | 23 | 2024 |
Explainable ai for time series via virtual inspection layers J Vielhaben, S Lapuschkin, G Montavon, W Samek Pattern Recognition 150, 110309, 2024 | 15 | 2024 |
PredDiff: Explanations and interactions from conditional expectations S Blücher, J Vielhaben, N Strodthoff Artificial Intelligence 312, 103774, 2022 | 15 | 2022 |
USMPep: universal sequence models for major histocompatibility complex binding affinity prediction J Vielhaben, M Wenzel, W Samek, N Strodthoff BMC bioinformatics 21, 1-16, 2020 | 15 | 2020 |
Viewport forecasting in 360 virtual reality videos with machine learning J Vielhaben, H Camalan, W Samek, M Wenzel 2019 IEEE international conference on artificial intelligence and virtual …, 2019 | 8 | 2019 |
Decoupling pixel flipping and occlusion strategy for consistent xai benchmarks S Blücher, J Vielhaben, N Strodthoff arXiv preprint arXiv:2401.06654, 2024 | 7 | 2024 |
Generative neural samplers for the quantum Heisenberg chain J Vielhaben, N Strodthoff Physical Review E 103 (6), 063304, 2021 | 7 | 2021 |
Sparse subspace clustering for concept discovery (SSCCD) J Vielhaben, S Blücher, N Strodthoff arXiv preprint arXiv:2203.06043, 2022 | 6 | 2022 |
Xai-based comparison of input representations for audio event classification A Frommholz, F Seipel, S Lapuschkin, W Samek, J Vielhaben arXiv preprint arXiv:2304.14019, 2023 | 3 | 2023 |
XAI-based Comparison of Audio Event Classifiers with different Input Representations A Frommholz, F Seipel, S Lapuschkin, W Samek, J Vielhaben Proceedings of the 20th International Conference on Content-based Multimedia …, 2023 | 2 | 2023 |
PURE: Turning Polysemantic Neurons Into Pure Features by Identifying Relevant Circuits M Dreyer, E Purelku, J Vielhaben, W Samek, S Lapuschkin arXiv preprint arXiv:2404.06453, 2024 | 1 | 2024 |
Predicting the binding of SARS-CoV-2 peptides to the major histocompatibility complex with recurrent neural networks J Vielhaben, M Wenzel, E Weicken, N Strodthoff arXiv preprint arXiv:2104.08237, 2021 | 1 | 2021 |
PURE: Turning Polysemantic Neurons Into Pure Features by Identifying Relevant Circuits—Supplementary Material— M Dreyer, E Purelku, J Vielhaben, W Samek, S Lapuschkin | | |
Explainable AI for Audio via Virtual Inspection Layers J Vielhaben, S Lapuschkin, G Montavon, W Samek | | |