In silico prediction of physical protein interactions and characterization of interactome orphans M Kotlyar, C Pastrello, F Pivetta, A Lo Sardo, C Cumbaa, H Li, T Naranian, ... Nature methods 12 (1), 79-84, 2015 | 176 | 2015 |
Binary tree-structured vector quantization approach to clustering and visualizing microarray data M Sultan, DA Wigle, CA Cumbaa, M Maziarz, J Glasgow, MS Tsao, ... Bioinformatics 18 (suppl_1), S111-S119, 2002 | 111 | 2002 |
Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates CA Cumbaa, A Lauricella, N Fehrman, C Veatch, R Collins, JR Luft, ... Acta Crystallographica Section D: Biological Crystallography 59 (9), 1619-1627, 2003 | 85 | 2003 |
What is initiative? R Cohen, C Allaby, C Cumbaa, M Fitzgerald, K Ho, B Hui, C Latulipe, F Lu, ... User Modeling and User-Adapted Interaction 8, 171-214, 1998 | 82 | 1998 |
pathDIP 4: an extended pathway annotations and enrichment analysis resource for human, model organisms and domesticated species S Rahmati, M Abovsky, C Pastrello, M Kotlyar, R Lu, CA Cumbaa, ... Nucleic acids research 48 (D1), D479-D488, 2020 | 68 | 2020 |
Protein crystallization analysis on the world community grid CA Cumbaa, I Jurisica Journal of structural and functional genomics 11, 61-69, 2010 | 58 | 2010 |
Automatic classification and pattern discovery in high-throughput protein crystallization trials C Cumbaa, I Jurisica Journal of structural and functional genomics 6, 195-202, 2005 | 47 | 2005 |
Establishing a training set through the visual analysis of crystallization trials. Part I:∼ 150 000 images EH Snell, JR Luft, SA Potter, AM Lauricella, SM Gulde, MG Malkowski, ... Acta Crystallographica Section D: Biological Crystallography 64 (11), 1123-1130, 2008 | 36 | 2008 |
A stemness screen reveals C3orf54/INKA1 as a promoter of human leukemia stem cell latency KB Kaufmann, L Garcia-Prat, Q Liu, SWK Ng, SI Takayanagi, A Mitchell, ... Blood, The Journal of the American Society of Hematology 133 (20), 2198-2211, 2019 | 28 | 2019 |
Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples EH Snell, AM Lauricella, SA Potter, JR Luft, SM Gulde, RJ Collins, ... Acta Crystallographica Section D: Biological Crystallography 64 (11), 1131-1137, 2008 | 23 | 2008 |
Knowledge discovery in proteomics I Jurisica, D Wigle Chapman and Hall/CRC, 2005 | 22 | 2005 |
High-throughput protein crystallization on the World Community Grid and the GPU Y Kotseruba, CA Cumbaa, I Jurisica Journal of Physics: Conference Series 341 (1), 012027, 2012 | 12 | 2012 |
Modeling Protein Secondary Structure by Products of Dependent Experts C Cumbaa University of Waterloo, 2001 | 2 | 2001 |
Revealing heterogeneity in chronic lymphocytic leukemia: AI-driven insights into aggressive and indolent disease subtypes. B Qorri, J Geraci, M Tsay, C Cumbaa, L Alphs, L Pani Journal of Clinical Oncology 42 (16_suppl), e19029-e19029, 2024 | 1 | 2024 |
Abstract B066: An AI approach to unraveling treatment response in pancreatic cancer: Insights from the COMPASS trial leveraging large language models (LLMs) J Geraci, B Qorri, M Tsay, C Cumbaa, P Leonchyk, L Alphs, L Pani Cancer Research 84 (17_Supplement_2), B066-B066, 2024 | | 2024 |
Using Machine Learning to Explore Multimodal Digital Markers for Early Detection of Cognitive Impairment in Alzheimer’s Disease J Geraci, E Searls, B Qorri, S Low, Z Li, P Joung, KA Gifford, A Pratap, ... Alzheimer's Association International Conference, 2024 | | 2024 |
In silico prediction of physical protein interactions and characterization of interactome orphans (vol 12, pg 79, 2015) M Kotlyar, C Pastrello, F Pivetta, A Lo Sardo, C Cumbaa, H Li, T Naranian, ... JCR-JOURNAL OF CLINICAL RHEUMATOLOGY 21 (1), 2015 | | 2015 |
What is Initiative? K FITZGERALD, B HUI, C LATULIPE Computational Models of Mixed-Initiative Interaction 8, 171-214, 2013 | | 2013 |
Protein secondary structure prediction by merged hidden Markov models CA Cumbaa ACM SIGBIO Newsletter 20 (1), 25, 2000 | | 2000 |
Development of the Treatment Attitude Profile (TAP) Scale: AI/ML-Driven Insights for Clinical Trial Enrichment to Minimize Placebo Response J Geraci, B Qorri, M Tsay, C Cumbaa, P Leonchyk, L Pani, L Alphs | | |