Improved techniques for training gans T Salimans, I Goodfellow, W Zaremba, V Cheung, A Radford, X Chen Advances in neural information processing systems 29, 2016 | 7811 | 2016 |
Improving language understanding by generative pre-training A Radford, K Narasimhan, T Salimans, I Sutskever | 5319* | 2018 |
Weight normalization: A simple reparameterization to accelerate training of deep neural networks T Salimans, DP Kingma Advances in neural information processing systems 29, 2016 | 1707 | 2016 |
Improved variational inference with inverse autoregressive flow DP Kingma, T Salimans, R Jozefowicz, X Chen, I Sutskever, M Welling Advances in neural information processing systems 29, 2016 | 1602 | 2016 |
Evolution strategies as a scalable alternative to reinforcement learning T Salimans, J Ho, X Chen, S Sidor, I Sutskever arXiv preprint arXiv:1703.03864, 2017 | 1330 | 2017 |
Variational dropout and the local reparameterization trick DP Kingma, T Salimans, M Welling Advances in neural information processing systems 28, 2015 | 1295 | 2015 |
Dota 2 with large scale deep reinforcement learning C Berner, G Brockman, B Chan, V Cheung, P Dębiak, C Dennison, ... arXiv preprint arXiv:1912.06680, 2019 | 1062 | 2019 |
Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications T Salimans, A Karpathy, X Chen, DP Kingma arXiv preprint arXiv:1701.05517, 2017 | 840 | 2017 |
Variational lossy autoencoder X Chen, DP Kingma, T Salimans, Y Duan, P Dhariwal, J Schulman, ... arXiv preprint arXiv:1611.02731, 2016 | 652 | 2016 |
Markov chain monte carlo and variational inference: Bridging the gap T Salimans, D Kingma, M Welling International conference on machine learning, 1218-1226, 2015 | 581 | 2015 |
Photorealistic text-to-image diffusion models with deep language understanding C Saharia, W Chan, S Saxena, L Li, J Whang, E Denton, ... arXiv preprint arXiv:2205.11487, 2022 | 337 | 2022 |
Axial attention in multidimensional transformers J Ho, N Kalchbrenner, D Weissenborn, T Salimans arXiv preprint arXiv:1912.12180, 2019 | 265 | 2019 |
Improving GANs Using Optimal Transport T Salimans, H Zhang, A Radford, D Metaxas International Conference on Learning Representations (ICLR), 2018 | 252 | 2018 |
How good is the bayes posterior in deep neural networks really? F Wenzel, K Roth, BS Veeling, J Świątkowski, L Tran, S Mandt, J Snoek, ... arXiv preprint arXiv:2002.02405, 2020 | 240 | 2020 |
Fixed-form variational posterior approximation through stochastic linear regression T Salimans, DA Knowles | 229 | 2013 |
Image super-resolution via iterative refinement C Saharia, J Ho, W Chan, T Salimans, DJ Fleet, M Norouzi IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022 | 181 | 2022 |
Classifier-free diffusion guidance J Ho, T Salimans arXiv preprint arXiv:2207.12598, 2022 | 171 | 2022 |
Variational diffusion models D Kingma, T Salimans, B Poole, J Ho Advances in neural information processing systems 34, 21696-21707, 2021 | 160 | 2021 |
Metnet: A neural weather model for precipitation forecasting CK Sønderby, L Espeholt, J Heek, M Dehghani, A Oliver, T Salimans, ... arXiv preprint arXiv:2003.12140, 2020 | 148 | 2020 |
Cascaded Diffusion Models for High Fidelity Image Generation. J Ho, C Saharia, W Chan, DJ Fleet, M Norouzi, T Salimans J. Mach. Learn. Res. 23 (47), 1-33, 2022 | 137 | 2022 |