Folgen
Tomás Sanz-Perela
Tomás Sanz-Perela
Bestätigte E-Mail-Adresse bei uam.es - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Semilinear integro-differential equations, I: odd solutions with respect to the Simons cone
JC Felipe-Navarro, T Sanz-Perela
Journal of Functional Analysis 278 (2), 108309, 2020
72020
The wave equation for stiff strings and piano tuning
X Gracia, T Sanz-Perela
Rep. @SCM 3, 1-16, 2017
72017
Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian
T Sanz-Perela
Commun. Pure Appl. Anal., 2547-2575, 2018
52018
A universal Hölder estimate up to dimension 4 for stable solutions to half-Laplacian semilinear equations
X Cabré, T Sanz-Perela
Journal of Differential Equations 317, 153-195, 2022
22022
Semilinear integro-differential equations, II: one-dimensional and saddle-shaped solutions to the Allen-Cahn equation
JC Felipe-Navarro, T Sanz-Perela
Math. Eng., 1-36, 2021
22021
Uniqueness and stability of the saddle-shaped solution to the fractional Allen–Cahn equation
JC Felipe-Navarro, T Sanz-Perela
Revista Matemática Iberoamericana 36 (6), 1887-1916, 2020
22020
Stable solutions of nonlinear fractional elliptic problems
T Sanz Perela
Universitat Politècnica de Catalunya, 2019
22019
Stable solutions to fractional semilinear equations: uniqueness, classification, and approximation results
T Sanz-Perela
arXiv preprint arXiv:2210.02477, 2022
12022
Eigenvalue curves for generalized MIT bag models
N Arrizabalaga, A Mas, T Sanz-Perela, L Vega
Communications in Mathematical Physics, 1-56, 2022
2022
Stable and periodic solutions to nonlinear equations with fractional diffusion
T Sanz Perela
Universitat Politècnica de Catalunya, 2016
2016
De l'equació d'ones a l'afinació del piano: un model basat en la teoria de la dissonància
T Sanz Perela
Universitat Politècnica de Catalunya, 2015
2015
Per que ens agrada la música? Una resposta matematica
T Sanz-Perela
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–12