Folgen
Mihail Poplavskyi
Mihail Poplavskyi
Lecturer at Queen Mary University
Keine bestätigte E-Mail-Adresse
Titel
Zitiert von
Zitiert von
Jahr
Exact Persistence Exponent for the -Diffusion Equation and Related Kac Polynomials
M Poplavskyi, G Schehr
Physical review letters 121 (15), 150601, 2018
442018
On the distribution of the largest real eigenvalue for the real Ginibre ensemble
M Poplavskyi, R Tribe, O Zaboronski
212017
What is the probability that a large random matrix has no real eigenvalues?
E Kanzieper, M Poplavskyi, C Timm, R Tribe, O Zaboronski
182016
Examples of Interacting Particle Systems on as Pfaffian Point Processes: Annihilating and Coalescing Random Walks
B Garrod, M Poplavskyi, RP Tribe, OV Zaboronski
Annales Henri Poincaré 19 (12), 3635-3662, 2018
13*2018
Erratum to: The Ginibre ensemble of real random matrices and its scaling limits
A Borodin, M Poplavskyi, CD Sinclair, R Tribe, O Zaboronski
Communications in Mathematical Physics 346, 1051-1055, 2016
102016
On pure complex spectrum for truncations of random orthogonal matrices and Kac polynomials
M Gebert, M Poplavskyi
arXiv preprint arXiv:1905.03154, 2019
72019
Extreme eigenvalues and the emerging outlier in rank-one non-Hermitian deformations of the Gaussian unitary ensemble
YV Fyodorov, BA Khoruzhenko, M Poplavskyi
Entropy 25 (1), 74, 2022
62022
Bulk universality for unitary matrix models
M Poplavskyi
Journal of Mathematical Physics, Analysis, Geometry 5 (3), 245-274, 2008
42008
Asymptotic behavior of the Verblunsky coefficients for the OPUC with a varying weight
M Poplavskyi
Journal of mathematical physics 53 (4), 2012
12012
THE ANNALS
E KANZIEPER, M POPLAVSKYI, C TIMM
The Annals of Applied Probability 26 (5), 2597-2625, 2016
2016
Universality at the edge for unitary matrix models
M Poplavskyi
arXiv preprint arXiv:1306.6892, 2013
2013
Asymptotic behavior of the CMV matrix coefficients for the OPUC with a varying weight.
M Poplavskyi
arXiv preprint arXiv:1006.5515, 2010
2010
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–12