Follow
Wendelin Böhmer
Wendelin Böhmer
Sequential Decision Making Group, Delft University of Technology
Verified email at tudelft.nl - Homepage
Title
Cited by
Cited by
Year
Facmac: Factored multi-agent centralised policy gradients
B Peng, T Rashid, C Schroeder de Witt, PA Kamienny, P Torr, W Böhmer, ...
Advances in Neural Information Processing Systems 34, 12208-12221, 2021
2212021
Deep coordination graphs
W Böhmer, V Kurin, S Whiteson
International Conference on Machine Learning, 980-991, 2020
1902020
Multi-agent common knowledge reinforcement learning
C Schroeder de Witt, J Foerster, G Farquhar, P Torr, W Boehmer, ...
Advances in neural information processing systems 32, 2019
912019
Autonomous learning of state representations for control: An emerging field aims to autonomously learn state representations for reinforcement learning agents from their real …
W Böhmer, JT Springenberg, J Boedecker, M Riedmiller, K Obermayer
KI-Künstliche Intelligenz 29 (4), 353-362, 2015
902015
Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control
C Schroeder de Witt, B Peng, PA Kamienny, P Torr, W Böhmer, ...
arXiv e-prints, arXiv: 2003.06709, 2020
85*2020
Transient non-stationarity and generalisation in deep reinforcement learning
M Igl, G Farquhar, J Luketina, W Boehmer, S Whiteson
arXiv preprint arXiv:2006.05826, 2020
822020
Randomized entity-wise factorization for multi-agent reinforcement learning
S Iqbal, CAS De Witt, B Peng, W Böhmer, S Whiteson, F Sha
International Conference on Machine Learning, 4596-4606, 2021
81*2021
My body is a cage: the role of morphology in graph-based incompatible control
V Kurin, M Igl, T Rocktäschel, W Boehmer, S Whiteson
arXiv preprint arXiv:2010.01856, 2020
732020
Generalized off-policy actor-critic
S Zhang, W Boehmer, S Whiteson
Advances in neural information processing systems 32, 2019
542019
Uneven: Universal value exploration for multi-agent reinforcement learning
T Gupta, A Mahajan, B Peng, W Böhmer, S Whiteson
International Conference on Machine Learning, 3930-3941, 2021
512021
Optimistic exploration even with a pessimistic initialisation
T Rashid, B Peng, W Boehmer, S Whiteson
arXiv preprint arXiv:2002.12174, 2020
512020
The effect of novelty on reinforcement learning
A Houillon, RC Lorenz, W Böhmer, MA Rapp, A Heinz, J Gallinat, ...
Progress in brain research 202, 415-439, 2013
472013
Neural systems for choice and valuation with counterfactual learning signals
MJ Tobia, R Guo, U Schwarze, W Böhmer, J Gläscher, B Finckh, ...
NeuroImage 89, 57-69, 2014
452014
The impact of non-stationarity on generalisation in deep reinforcement learning
M Igl, G Farquhar, J Luketina, W Boehmer, S Whiteson
arXiv preprint arXiv:2006.05826, 2020
352020
Exploration with unreliable intrinsic reward in multi-agent reinforcement learning
W Böhmer, T Rashid, S Whiteson
arXiv preprint arXiv:1906.02138, 2019
312019
Multitask soft option learning
M Igl, A Gambardella, J He, N Nardelli, N Siddharth, W Böhmer, ...
Conference on Uncertainty in Artificial Intelligence, 969-978, 2020
302020
Multi-agent common knowledge reinforcement learning
CAS de Witt, JN Foerster, G Farquhar, PHS Torr, W Boehmer, S Whiteson
arXiv preprint arXiv:1810.11702, 2018
302018
Construction of Approximation Spaces for Reinforcement Learning.
W Böhmer, S Grünewälder, Y Shen, M Musial, K Obermayer
Journal of Machine Learning Research 14 (7), 2013
302013
Deep residual reinforcement learning
S Zhang, W Boehmer, S Whiteson
arXiv preprint arXiv:1905.01072, 2019
282019
Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis
W Böhmer, S Grünewälder, H Nickisch, K Obermayer
Machine Learning 89, 67-86, 2012
232012
The system can't perform the operation now. Try again later.
Articles 1–20