LEILA HASSAN-ESFAHANI
LEILA HASSAN-ESFAHANI
Post Doc Fellow at Utah State University
Bestätigte E-Mail-Adresse bei aggiemail.usu.edu
Titel
Zitiert von
Zitiert von
Jahr
Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks
L Hassan- Esfahani, A Torres-Rua, A Jensen, M McKee
Remote Sensing 7 (3), 2627-2646, 2015
932015
Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data
L Hassan-Esfahani, A Torres-Rua, M McKee
Agricultural Water Management 153, 42-50, 2015
442015
TOPSOIL MOISTURE ESTIMATION FOR PRECISION AGRICULTURE USING UNMMANED AERIAL VEHICLE MULTISPECTRAL IMAGERY
L Hassan-Esfahani, A Torres-Rua, M Jensen, Austin, McKee
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), 2014
322014
Spatial Root -Zone Soil Water Content Estimation in Agricultural Lands Using A Bayesian-Based Artificial Neural Networks and High Resolution Visual, NIR, and Thermal Imagery
L Hassan-Esfahani, A Torres-Rua, A Jensen, M McKee
Irrigation and Drainage, 2017
172017
The impact of slit and detention dams on debris flow control using GSTARS 3.0
L Hassan-Esfahani, ME Banihabib
Environmental Earth Sciences 75 (4), 1-11, 2016
92016
Spatial scale gap filling using an unmanned aerial system: A statistical downscaling method for applications in precision agriculture
L Hassan-Esfahani, AM Ebtehaj, A Torres-Rua, M McKee
Sensors 17 (9), 2106, 2017
72017
High Resolution Multi-Spectral Imagery and Learning Machines in Precision Irrigation Water Management
L Hassan-Esfahani
phd Dissertation, 2015
62015
Development of unmanned aerial systems for use in precision agriculture: The AggieAir experience
A Torres-Rua, M Al Arab, L Hassan-Esfahani, A Jensen, M McKee
2015 IEEE Conference on Technologies for Sustainability (SusTech), 77-82, 2015
52015
Mapping Annual Riparian Water Use Based on the Single-Satellite-Scene Approach
K Khand, S Taghvaeian, L Hassan-Esfahani
Remote Sensing 9 (8), 832, 2017
32017
Fusion of High Resolution Multi-Spectral Imagery for Surface Soil Moisture Estimation Using Learning Machines
L Hassan Esfahani, A Torres-Rua, A Jensen, M McKee
Spring runoff conference, USU 2014, 2014
22014
The Contributions of Landsat and Airborne Products in Monitoring Surface Soil Moisture
L Hassan-Esfahani
12015
Evaluation of GSTARS Model for Simulation of Sedimentation in Detention Basins
ME Banihabib, Y Hassanzadeh, L Hassan-Esfahani
12006
Evaluation of HEC-RAS Model for Simulation of Sedimentation in Detention Basins
ME Banihabib, Y Hassanzadeh, L Hassan-Esfahani
12005
Fusion of satellite and UAV imagery and big data for smarter farming
M McKee, AF Torres-Rua, M Aboutalebi, L Hassan Esfahani, M ELarab, ...
AGU Fall Meeting Abstracts, 2018
2018
Application of Unmanned Aerial Systems in Spatial Downscaling of Landsat VIR imageries of Agricultural Fields
A Torres, L Hassan Esfahani, A Ebtehaj, M McKee
AGU Fall Meeting Abstracts, 2016
2016
Validating and applying the single-satellitescene approach to mapping riparian water use
S Taghvaeian, L Hassan-Esfahani
World Environmental & Water Resources Congress, 2016
2016
Spanning high and low resolution remote sensing products in precision agriculture
L Hassan-Esfahani, M Ebtehaj, A Torres-Rua, M Jensen, Austin, McKee
World Environmental & Water Resources Congress, 2016
2016
Spatial assessment of high and low resolution remote sensing products using downscaling methods for precision agriculture
L Hassan-Esfahani, A Ebtehaj, A Torres-Rua, M McKee
International Journal of Applied Earth Observation and Geoinformation, 2016
2016
Use of UAS to Support Management in Precision Agriculture: The AggieAir Experience
M McKee, AF Torres-Rua, M ELarab, L Hassan Esfahani, A Jensen
AGU Fall Meeting Abstracts, 2015
2015
Use of UAS to Support Management in Precision Agriculture
M McKee, A Torres-Rua, M Elarab, L Hassan-Esfahani, A Jensen
American Geophysical Union (AGU), Fall Meeting 2015, 2015
2015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20