Follow
Antonio Orvieto
Title
Cited by
Cited by
Year
Learning explanations that are hard to vary
G Parascandolo, A Neitz, A Orvieto, L Gresele, B Schölkopf
International Conference on Learning Representations (2021), 2020
962020
A continuous-time perspective for modeling acceleration in Riemannian optimization
F Alimisis, A Orvieto, G Bécigneul, A Lucchi
International Conference on Artificial Intelligence and Statistics, 1297-1307, 2020
422020
Momentum improves optimization on Riemannian manifolds
F Alimisis, A Orvieto, G Becigneul, A Lucchi
International Conference on Artificial Intelligence and Statistics, 1351-1359, 2021
36*2021
Faster single-loop algorithms for minimax optimization without strong concavity
J Yang, A Orvieto, A Lucchi, N He
International Conference on Artificial Intelligence and Statistics, 5485-5517, 2022
262022
Continuous-time models for stochastic optimization algorithms
A Orvieto, A Lucchi
Advances in Neural Information Processing Systems 32 (2019), 2018
252018
Anticorrelated noise injection for improved generalization
A Orvieto, H Kersting, F Proske, F Bach, A Lucchi
International Conference on Machine Learning (ICML), 2022, 2022
152022
The role of memory in stochastic optimization
A Orvieto, J Kohler, A Lucchi
Uncertainty in Artificial Intelligence, 356-366, 2020
152020
An accelerated dfo algorithm for finite-sum convex functions
Y Chen, A Orvieto, A Lucchi
International Conference on Machine Learning (ICML), 2020, 2020
152020
Shadowing properties of optimization algorithms
A Orvieto, A Lucchi
Advances in Neural Information Processing Systems 32 (2019), 2019
142019
Signal Propagation in Transformers: Theoretical Perspectives and the Role of Rank Collapse
L Noci, S Anagnostidis, L Biggio, A Orvieto, SP Singh, A Lucchi
Advances in Neural Information Processing Systems (NeurIPS) 2022, 2022
62022
Explicit regularization in overparametrized models via noise injection
A Orvieto, A Raj, H Kersting, F Bach
International Conference on Artificial Intelligence and Statistics, 7265-7287, 2023
52023
Revisiting the Role of Euler Numerical Integration on Acceleration and Stability in Convex Optimization
P Zhang, A Orvieto, H Daneshmand, T Hofmann, R Smith
International Conference on Artificial Intelligence and Statistics (2021), 2021
52021
Resurrecting recurrent neural networks for long sequences
A Orvieto, SL Smith, A Gu, A Fernando, C Gulcehre, R Pascanu, S De
arXiv preprint arXiv:2303.06349, 2023
42023
Dynamics of SGD with Stochastic Polyak Stepsizes: Truly Adaptive Variants and Convergence to Exact Solution
A Orvieto, S Lacoste-Julien, N Loizou
Advances in Neural Information Processing Systems (NeurIPS) 2022, 2022
42022
On the Theoretical Properties of Noise Correlation in Stochastic Optimization
A Lucchi, F Proske, A Orvieto, F Bach, H Kersting
Advances in Neural Information Processing Systems (NeurIPS) 2022, 2022
32022
Vanishing Curvature in Randomly Initialized Deep ReLU Networks.
A Orvieto, J Kohler, D Pavllo, T Hofmann, A Lucchi
AISTATS, 7942-7975, 2022
3*2022
On the second-order convergence properties of random search methods
A Lucchi, A Orvieto, A Solomou
Advances in Neural Information Processing Systems 34, 25633-25645, 2021
32021
Two-Level K-FAC Preconditioning for Deep Learning
N Tselepidis, J Kohler, A Orvieto
NeurIPS 2020 Workshop on Optimization for Machine Learning (OPT2020), 2020
32020
Randomized Signature Layers for Signal Extraction in Time Series Data
E Monzio Compagnoni, L Biggio, A Orvieto, T Hofmann, J Teichmann
arXiv e-prints, arXiv: 2201.00384, 2022
2*2022
Rethinking the Variational Interpretation of Accelerated Optimization Methods
P Zhang, A Orvieto, H Daneshmand
Advances in Neural Information Processing Systems 34, 14396-14406, 2021
2*2021
The system can't perform the operation now. Try again later.
Articles 1–20