Asymptotic iteration method for eigenvalue problems H Ciftci, RL Hall, N Saad Journal of Physics A: Mathematical and General 36 (47), 11807, 2003 | 632 | 2003 |

Construction of exact solutions to eigenvalue problems by the asymptotic iteration method H Ciftci, RL Hall, N Saad Journal of Physics A: Mathematical and General 38 (5), 1147, 2005 | 236 | 2005 |

Perturbation theory in a framework of iteration methods H Ciftci, RL Hall, N Saad Physics Letters A 340 (5-6), 388-396, 2005 | 215 | 2005 |

The Klein–Gordon equation with a generalized Hulthén potential in D-dimensions N Saad Physica Scripta 76 (6), 623, 2007 | 93 | 2007 |

Iterative solutions to the Dirac equation H Ciftci, RL Hall, N Saad Physical Review A 72 (2), 022101, 2005 | 88 | 2005 |

On some formulas for the Appell function *F*_{2} (*a, b, b*′; *c, c*′; *w; z*)YA Brychkov, N Saad Integral Transforms and Special Functions 25 (2), 111-123, 2014 | 79 | 2014 |

Criterion for polynomial solutions to a class of linear differential equations of second order N Saad, RL Hall, H Ciftci Journal of Physics A: Mathematical and General 39 (43), 13445, 2006 | 74 | 2006 |

Spiked harmonic oscillators RL Hall, N Saad, AB von Keviczky Journal of Mathematical Physics 43 (1), 94-112, 2002 | 67 | 2002 |

Casimir force in Randall-Sundrum models with q+ 1 dimensions M Frank, N Saad, I Turan Physical Review D 78 (5), 055014, 2008 | 61 | 2008 |

The Klein-Gordon equation with the Kratzer potential in d dimensions N Saad, R Hall, H Ciftci Open Physics 6 (3), 717-729, 2008 | 60 | 2008 |

Some reduction and transformation formulas for the Appell hypergeometric function F2 SB Opps, N Saad, HM Srivastava Journal of mathematical analysis and applications 302 (1), 180-195, 2005 | 58 | 2005 |

Recursion formulas for Appell’s hypergeometric function F2 with some applications to radiation field problems SB Opps, N Saad, HM Srivastava Applied mathematics and computation 207 (2), 545-558, 2009 | 57 | 2009 |

Quantum information entropies for an asymmetric trigonometric Rosen–Morse potential GH Sun, SH Dong, N Saad Annalen der Physik 525 (12), 934-943, 2013 | 56 | 2013 |

Sextic anharmonic oscillators and orthogonal polynomials N Saad, RL Hall, H Ciftci Journal of Physics A: Mathematical and General 39 (26), 8477, 2006 | 55 | 2006 |

Some formulas for the Appell function *F* _{1} (*a, b, b*′; *c; w, z*)YA Brychkov, N Saad Integral Transforms and Special Functions 23 (11), 793-802, 2012 | 53 | 2012 |

Variational analysis for a generalized spiked harmonic oscillator RL Hall, N Saad Journal of Physics A: Mathematical and General 33 (3), 569, 2000 | 53 | 2000 |

Physical applications of second-order linear differential equations that admit polynomial solutions H Ciftci, RL Hall, N Saad, E Dogu Journal of Physics A: Mathematical and Theoretical 43 (41), 415206, 2010 | 51 | 2010 |

Asymptotic iteration method for singular potentials B Champion, RL Hall, N Saad International Journal of Modern Physics A 23 (09), 1405-1415, 2008 | 46 | 2008 |

Integrals containing confluent hypergeometric functions with applications to perturbed singular potentials N Saad, RL Hall Journal of Physics A: Mathematical and General 36 (28), 7771, 2003 | 45 | 2003 |

Exact and approximate solutions of Schrödinger’s equation for a class of trigonometric potentials H Ciftci, R Hall, N Saad Open Physics 11 (1), 37-48, 2013 | 42 | 2013 |