TensorFlow: Large-scale machine learning on heterogeneous systems, 2015 M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... Software available from tensorflow. org, 0 | 58210* | |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ... arXiv preprint arXiv:2312.11805, 2023 | 2183 | 2023 |
Unsupervised learning of depth and ego-motion from monocular video using 3d geometric constraints R Mahjourian, M Wicke, A Angelova Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 895 | 2018 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ... arXiv preprint arXiv:2403.05530, 2024 | 684 | 2024 |
Tensorflow: A system for large-scale machine learning A Martín, B Paul, C Jianmin, C Zhifeng, D Andy, D Jeffrey, D Matthieu, ... 12th USENIX symposium on operating systems design and implementation (OSDI …, 2016 | 545 | 2016 |
TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016) M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... arXiv preprint arXiv:1603.04467 52, 2015 | 525 | 2015 |
Tfx: A tensorflow-based production-scale machine learning platform D Baylor, E Breck, HT Cheng, N Fiedel, CY Foo, Z Haque, S Haykal, ... Proceedings of the 23rd ACM SIGKDD international conference on knowledge …, 2017 | 487 | 2017 |
Non‐Rigid Registration Under Isometric Deformations QX Huang, B Adams, M Wicke, LJ Guibas Computer Graphics Forum 27 (5), 1449-1457, 2008 | 388 | 2008 |
12th USENIX symposium on operating systems design and implementation (OSDI 16) M Abadi, P Barham, J Chen, Z Chen, A Davis, J Dean, M Devin, ... Savannah, GA, 265-283, 2016 | 272 | 2016 |
Dynamic local remeshing for elastoplastic simulation M Wicke, D Ritchie, BM Klingner, S Burke, JR Shewchuk, JF O'Brien ACM Transactions on graphics (TOG) 29 (4), 1-11, 2010 | 226 | 2010 |
Adaptive space deformations based on rigid cells M Botsch, M Pauly, M Wicke, M Gross Computer Graphics Forum 26 (3), 339-347, 2007 | 195 | 2007 |
Polyhedral finite elements using harmonic basis functions S Martin, P Kaufmann, M Botsch, M Wicke, M Gross Computer graphics forum 27 (5), 1521-1529, 2008 | 175 | 2008 |
TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv 2015 M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... arXiv preprint arXiv:1603.04467, 2016 | 159 | 2016 |
A finite element method on convex polyhedra M Wicke, M Botsch, M Gross Computer Graphics Forum 26 (3), 355-364, 2007 | 156 | 2007 |
Simulating liquids and solid-liquid interactions with lagrangian meshes P Clausen, M Wicke, JR Shewchuk, JF O'brien ACM Transactions on Graphics (TOG) 32 (2), 1-15, 2013 | 145 | 2013 |
Modular bases for fluid dynamics M Wicke, M Stanton, A Treuille ACM Transactions on Graphics (TOG) 28 (3), 1-8, 2009 | 135 | 2009 |
Shape decomposition using modal analysis QX Huang, M Wicke, B Adams, L Guibas Computer Graphics Forum 28 (2), 407-416, 2009 | 105 | 2009 |
Predictive QoS routing to mobile sinks in wireless sensor networks B Kusy, HJ Lee, M Wicke, N Milosavljevic, L Guibas 2009 International Conference on Information Processing in Sensor Networks …, 2009 | 101 | 2009 |
TensorFlow M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... Large-scale machine learning on heterogeneous systems 11, 2015 | 82 | 2015 |
& Zheng M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... X.: Tensorflow: Large-scale machine learning on heterogeneous distributed …, 2016 | 76 | 2016 |