Transforms and operators for directional bioimage analysis: a survey Z Püspöki, M Storath, D Sage, M Unser Focus on bio-image informatics, 69-93, 2016 | 350 | 2016 |
Learning steerable filters for rotation equivariant CNNs M Weiler, FA Hamprecht, M Storath CVPR 2018, 2018 | 326 | 2018 |
Joint image reconstruction and segmentation using the Potts model M Storath, A Weinmann, J Frikel, M Unser Inverse Problems 31 (2), 025003, 2015 | 134 | 2015 |
Jump-sparse and sparse recovery using Potts functionals M Storath, A Weinmann, L Demaret IEEE Transactions on Signal Processing 62 (14), 3654 - 3666, 2014 | 104 | 2014 |
Steerable wavelet frames based on the Riesz transform S Held, M Storath, P Massopust, B Forster IEEE Transactions on Image Processing 19 (3), 653-667, 2010 | 93 | 2010 |
Total variation regularization for manifold-valued data A Weinmann, L Demaret, M Storath SIAM Journal on Imaging Sciences 7 (4), 2226–2257, 2014 | 90 | 2014 |
Fast partitioning of vector-valued images M Storath, A Weinmann SIAM Journal on Imaging Sciences 7 (3), 1826–1852, 2014 | 79 | 2014 |
Edge preserving and noise reducing reconstruction for magnetic particle imaging M Storath, C Brandt, M Hofmann, T Knopp, J Salamon, A Weber, ... IEEE transactions on medical imaging 36 (1), 74-85, 2016 | 68 | 2016 |
An algorithmic framework for Mumford–Shah regularization of inverse problems in imaging K Hohm, M Storath, A Weinmann Inverse Problems 31 (11), 115011, 2015 | 39 | 2015 |
Model-based learning of local image features for unsupervised texture segmentation M Kiechle, M Storath, A Weinmann, M Kleinsteuber IEEE Transactions on Image Processing 27 (4), 1994-2007, 2018 | 33 | 2018 |
Total generalized variation for manifold-valued data K Bredies, M Holler, M Storath, A Weinmann SIAM Journal on Imaging Sciences 11 (3), 1785-1848, 2018 | 32 | 2018 |
The L1-Potts functional for robust jump-sparse reconstruction A Weinmann, M Storath, L Demaret SIAM Journal on Numerical Analysis 53 (1), 644–673, 2015 | 31 | 2015 |
Fast median filtering for phase or orientation data M Storath, A Weinmann IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (3), 639-652, 2017 | 30 | 2017 |
Directional multiscale amplitude and phase decomposition by the monogenic curvelet transform M Storath SIAM Journal on Imaging Sciences 4 (1), 57-78, 2011 | 29 | 2011 |
Mumford–Shah and Potts regularization for manifold-valued data A Weinmann, L Demaret, M Storath Journal of Mathematical Imaging and Vision 55, 428-445, 2016 | 26 | 2016 |
Iterative Potts and Blake–Zisserman minimization for the recovery of functions with discontinuities from indirect measurements A Weinmann, M Storath Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2015 | 26 | 2015 |
Exact algorithms for L1-TV regularization of real-valued or circle-valued signals M Storath, A Weinmann, M Unser SIAM Journal on Scientific Computing 38 (1), A614–A630, 2016 | 25 | 2016 |
Combined tensor fitting and TV regularization in diffusion tensor imaging based on a Riemannian manifold approach M Baust, A Weinmann, M Wieczorek, T Lasser, M Storath, N Navab IEEE transactions on medical imaging 35 (8), 1972-1989, 2016 | 17 | 2016 |
Fast segmentation from blurred data in 3D fluorescence microscopy M Storath, D Rickert, M Unser, A Weinmann IEEE Transactions on Image Processing 26 (10), 4856-4870, 2017 | 15 | 2017 |
Unsupervised texture segmentation using monogenic curvelets and the Potts model M Storath, A Weinmann, M Unser IEEE International Conference on Image Processing (ICIP), 4348-4352, 2014 | 15 | 2014 |